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ABSTRACT

This report describes our two submissions to the DCASE-2017
challenge for Task 1 (Acoustic scene classification). The first sub-
mission is motivated by the superior performance of the deep resid-
ual networks for both image and audio classifications. We propose a
modified deep residual architecture trained on log-mel spectrogram
patches in an end-to-end fashion for acoustic scene classification.
We configure the number of layers and kernels for the deep resid-
ual nets and find that the modified deep residual net of 34 layers
using binaural input features perform well on the DCASE-2017 de-
velopment dataset. In the second submission, we implement a shal-
lower network that consists of 3 convolutional layers and 2 fully
connected layers to benchmark the performance of the residual net-
work. Our two approaches improve the accuracy of the baseline by
10.8% and 10.6% respectively on the development set, and 9% and
6.9% on the unseen test set. We suggest that the size of the dataset
for Task 1 is relatively small for deep networks to significantly out-
perform shallower ones.

Index Terms— acoustic scene classification, convolutional
neural networks, deep learning, DCASE, ResNet

1. INTRODUCTION

The objective of acoustic scene classification is to classify a short
audio record into one of the labeled classes. In the Detection and
Classification of Acoustic Scene and Events (DCASE) 2017 chal-
lenge [1], a development dataset of 15 acoustic scenes with 312
10-second audio segments for each scene is provided. In both devel-
opment and evaluation stages, the training data and the test data are
ensured to include distinct recording locations for the same scene.
Classifiers are to be developed using on only the training data and
evaluated using on the provided test data.

The log-mel spectrogram that represents an audio segment as
an image is so far the most frequently used input feature for audio
classification. For the acoustic scene classification, the image-scene
mapping preserves similar learning procedures as for the image-
object mapping in the image classification. Many studies show
that the capability of the deep models proposed originally for im-
age classification is naturally extendable to the audio classification
[2, 3, 4, 5]. Among the proposed deep models, Convolutional Neu-
ral Networks (CNNss) have been proven to be effective in the acous-
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tic scene classification, and provide competitive performances com-
pared to the other classification methods [6].

Driven by the increasing sizes of databases for image and au-
dio classification, deeper CNN architectures become practical and
attractive [7, 5]. Many studies show that network depth is of crucial
importance and all the winners on the challenging ImageNet dataset
employ very deep models [8, 9, 10, 11]. However, optimizing a
deep CNN model is not a simple task. The study in [7] reveals that
for a plain CNN network, when the network depth increases, both
training and test accuracies get saturated and then degrade rapidly.
Before 2015, researchers only successfully trained CNN models as
deep as a few tens layers [12]. Fortunately, this problem has been
addressed by using a deep residual learning framework that sub-
stantially eases the training of deep networks [7]. The basic idea is
to reformulate the CNN layers as learning residual functions with
reference to the layer inputs, in stead of learning original functions.
Many experiments show that the nets with learning residuals are
much easier to optimize than the counterpart ’plain” nets and enjoy
accuracy gains from greatly increased depth [7, 5].

Considering the increased data size in DCASE-2017 challenge,
we are interested to find out if deeper CNN models can improve the
accuracy of the acoustic scene classification. Although many deep
CNN models have been proposed for the acoustic scene classifica-
tion in DCASE-2016 challenge, they usually have the number of
convolutional layers less than 15. Motivated by the deep residual
learning framework, we configure a deep residual net of 34 layers
and exploit the accuracy gain by increased network depth. In our
net configuration, all of the convolutional layers have 3 x 3 filter
size and the input log-mel spectrogram patch has 128 x 128 dimen-
sions. The kernel sizes are set accordingly for the data size. By
varying the number of input channels, we find that using the binau-
ral input channels enjoys accuracy gain compared to using only one
monaural input channel. Our proposed deep residual CNN model
outperforms the baseline by 10.8 % in accuracy in the DCASE-2017
development set and by 9% in the DCASE-2017 test set.

We compare the performances of the proposed deep residual
network against a shallower network to evaluate the effectiveness
of deep networks on the DCASE-2017 acoustic scene dataset. We
implement a relatively shallow neural network proposed by the New
York University [4], and evaluate its performance on Task 1. The
network consists of 3 convolutional layers and 2 fully connected
layers. The shallow network obtains competitive performance as
the deep residual network. From this observation, we suggest that
the size of the DCASE-2017 dataset for acoustic scene classifica-
tion might not be sufficiently large enough for deep models to sig-
nificantly outperform shallow ones.
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Figure 1: Residual building block unit.

2. DEEP RESIDUAL CONVOLUTIONAL NEURAL
NETWORKS

2.1. Residual learning

A building block of the residual learning is shown in Fig. 1 [7]. The
sub-blocks stand for the complete convolutional layers including the
activation functions. A deep residual net can consist of many such
building blocks by stacking them together. In one residual building
block, the output H(x) of the block is a mapping of the input x.
Instead of letting the multiple convolutional layers directly approx-
imate the mapping H (x), the residual mapping F'(x) = H(x) — x
is to be approximated. A shortcut connection from the input to the
output adds an identity mapping to the output of the stacked layers.
Identity shortcut connections add neither extra parameters nor com-
putational complexity. Empirical evidences show that the residual
networks are easier to optimize, and can improve classification ac-
curacy from the considerably increased depth and data size. The
entire network can still be trained by the back-propagation method.

2.2. The proposed residual net architecture

The proposed network architecture is a modified 34-layer residual
net (MResNet-34) as shown in Fig. 2. In the MResNet-34, there are
two types of residual building blocks: A and B which are shown in
Fig. 3 and Fig. 4, respectively. The difference between block A and
block B is the starting point of the shortcut connection. In block
A, the shortcut connection starts after the batch normalization (BN)
[10] and the rectified linear unit (ReLU) activation [13]. In block B,
the shortcut connection starts directly from the input of the block. In
Fig. 2, the numbers on the right side of block B indicate the number
of times that block B of the same settings is repeated. All of the
convolutional layers use 3 x 3 filter size. The stride, zero padding,
and kernel size are given by the values of S, P, and K, respectively.
Following the first convolutional layer, a 3 X 3 max pooling with
a stride of 2 is applied. The size of the input patch is therefore
reduced from 128 x 128 to 64 x 64 after the max pooling. At the
end of the MResNet-34, a global average pooling is performed. A
fully-connected layer with the softmax activation produces the class
probabilities.
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Figure 2: The proposed deep residual convolutional neural net-
work architecture (MResNet-34) for the acoustic scene classifica-
tion. The max pool and global average pool are not counted in the
convolutional layers. There are many repeated block Bs with same
settings as indicated by the number on the right side of the blocks
to increase the depth. Much deeper networks can be configured by
repeating block B several times.



Detection and Classification of Acoustic Scenes and Events 2017

input
l
2
BN

l

RelU

input 3x3 Conv

| S,PK
Res. Block A

output l’
RelU

3x3 Conv
$=1,P=1,K

12
output

Figure 3: Residual building block A: the shortcut connection starts
after ReLU.

2.3. Feature representation and preprocessing

We choose to use the log-mel spectrogram patches as the input fea-
ture representation for our system. To extract log-mel spectrograms,
we use the Librosa library [14] and set 128 frequency components
for the audio signals sampled at 44.1 kHz. We use a Hamming win-
dow with a size of 46 ms (2048 samples at 44.1 kHz) with 50%
overlap. The audio excerpts are first transformed into the frame-
based mel-spectrograms, and then are taken log scales on the mel-
spectrograms. For each evaluation, a global mean and a global stan-
dard deviation of each log-mel band are calculated from the corre-
sponding training set. Then each band of the log-mel spectrograms
of the training and test data is normalized by subtracting its global
mean and dividing by its global standard deviation. We finally form
non-overlap log-mel spectrogram patches of 128 x 128 (128 frames
and 128 mel-spaced frequency bins) for all audio excerpts. Each
log-mel spectrogram patch can be treated as a mono-channel image
and the target label is given by the acoustic scene class. Consider-
ing the binaural data is provided in DCASE-2017 challenge, we are
interested to investigate both the monaural setup and the binaural
setup in our experiments. For the monaural setup, we extract log-
mel spectrograms from only the averaged monaural channel. For
the binaural setup, we extract log-mel spectrograms not only from
the left and right channels, but also from the average and difference
between the left and the right channels.

2.4. Model implementation and training

Our model was implemented using TensorFlow [15] and was trained
using a single GPU. The parameters of our models are optimized
with mini-batch stochastic gradient descent (SGD) with the momen-
tum fixed at 0.9 throughout the entire training. The mini-batch size
was set to 128 samples. The learning rate was initialized to be 0.02
and reduced to half every 10 epochs. We applied an L2—weight
decay penalty of 0.0002 on all trainable parameters. Our training
process took about 60 seconds for each epoch. For all the models,
the training process ended after 100 epochs. To obtain the classi-
fication results at test stage, we first collected the individual class
probabilities for each patch. We then averaged the probabilities of
all patches from the same audio excerpt and assigned the class with
maximum average probability.
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Figure 4: Residual building block B: the shortcut connection starts
from the input of the block.

Table 1: Accuracy of the monaural and binaural log-mel features.

Model Feature Fold 1 Fold 2 Fold3 Fold 4 Average
MResNet-34 |Mono 81.2% 82.5% 78.8% 82.5% 81.3%
Binaural 86.0% 87.8% 82.6% 86.0% 85.6%

NYU Mono 83.5% 85.2% 79.9% 86.0% 83.6%
Binaural 84.8% 87.1% 81.7% 88.1% 85.4%

3. A SHALLOW CONVOLUTIONAL NEURAL NETWORK

The neural network proposed by Salamon and Bello [4] consists of
3 convolutional layers and 2 fully connected layer. We refer to this
model as NYU model. We slightly modify the network to speed
up the convergence and reduce overfiting. We add batch normal-
ization before the activation function in all 5 layers. We also add
L2—regularization for all of the weights of the convolutional lay-
ers with a penalty factor of 0.001. The number of parameters of
the NYU model is around 800, 000 while the number of parameters
of the MResNet-34 is 1,300,000. Even though the NYU model
is much shallower than the MResNet-34, due to the last two fully
connected layers and the higher number of filters in the convolu-
tional layers, the number of parameters of the NYU model is still
more than half of the number of parameters of the MresNet-34. We
use the same input to train the MResNet-34 model to train the NYU
network. The procedure to obtain the classification results is similar
to those of the MResNet-34 model.

4. EVALUATION RESULTS

4.1. Dataset and metrics

We report the results of the proposed MResNet-34 model and the
NYU model on the TUT DCASE-2017 development dataset. The
dataset contains 4680 audio records of total 13 hours with 15
different indoor and outdoor acoustic scene classes: beach, bus,
cafe/restaurant, car, city center, forest path, grocery store, home,
library, metro station, office, park, residential area, train and tram.
Our experiments are conducted using the 4-fold cross-validation
setup provided by the DCASE-2017 challenge where in each fold,
three-fourths of development data is used for training and one-
fourth of development data is used for test.
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Table 2: Class-wise accuracy of the MResNet-34 model using the
binaural log-mel input features on the DCASE-2017 development
dataset.

Scene Fold 1 Fold 2 Fold 3 Fold 4 std.
Beach 82.1% 79.5% 98.7% 80.8% 7.8%
Bus 88.5% 93.6% 96.2% 82.1% 5.4%
Café/Rest. 65.4% 83.3% 74.4% 76.9% 6.4%
Car 98.7% 96.2% 96.2% 97.4% 1.1%
City center 88.5% 88.5% 93.6% 92.3% 2.3%
Forest path 94.9% 98.7% 89.7% 89.7% 3.8%
Grocery store 88.5% 97.4% 69.2% 76.9% 10.8%
Home 97.4% 97.5% 65.4% 70.5% 14.9%
Library 55.1% 74.4% 82.1% 82.1% 11.0%
Metro station 94.9%  100.0% 97.4%  100.0% 2.1%
Office 98.7% 98.7%  100.0% 98.7% 0.6%
Park 85.9% 88.5% 37.2% 64.1% 20.6%
Resident. Area 75.6% 76.9% 88.5% 84.6% 5.3%
Train 75.6% 78.2% 55.1% 93.6% 13.7%
Tram 100.0% 65.4% 96.2%  100.0% 14.5%

Table 3: Class-wise accuracy of the NYU model using the binaural
log-mel input features on the DCASE-2017 development dataset.

Scene Fold 1 Fold 2 Fold 3 Fold 4 std.
Beach 85.9% 64.1% 97.2% 84.4% 11.9%
Bus 94.1% 84.6% 91.8% 96.4% 4.4%
Café/Rest. 67.4% 91.0% 51.3% 76.4% 14.4%
Car 97.4% 93.6% 100.0%  100.0% 2.6%
City center 92.3% 95.4% 87.7% 88.5% 3.1%
Forest path 96.4% 98.7% 89.2% 98.7% 3.9%
Grocery store 88.2% 92.8% 76.9% 86.4% 5.8%
Home 89.5% 82.7% 75.6% 69.7% 7.4%
Library 45.4% 71.0% 82.8% 75.4% 14.1%
Metro station 94.1%  100.0%  100.0% 98.7% 2.4%
Office 100.0% 99.2% 92.8% 99.2% 2.9%
Park 88.2% 88.7% 50.5% 70.3% 15.7%
Resident. Area 76.7% 84.9% 90.8% 80.3% 5.3%
Train 55.6% 89.0% 44.6% 97.4% 22.1%
Tram 100.0% 70.5% 94.9% 99.7% 12.2%

In Table 1, we show the classification accuracy of the two mod-
els for each fold using the monaural and the binaural setup. It is ob-
served that the binaural setup is better than the monaural setup for
all folds. Itis noted that the training patches in the binaural setup are
4 times of the training patches in the monaural setup. The increase
of training patches boosts the model performance. The binaural
setup has 4.3% higher in average accuracy using the MResNet-34
model. The gap is smaller using the NYU model.

In Table 2, we show the class-wise accuracy of the MResNet-34
model with the binaural setup for each fold. The class-wise accu-
racy varies across different classes and also varies across different
folds. The standard deviations (std) of the class-wise accuracies of
all four folds are varying from 0.6% to 20.6%. The Office has the
smallest standard deviation while the Park has the largest standard
deviation. It indicates that the model is affected by the ways of
splitting the training data and the test data. The model learns well
from all the splits of the Office data, while has learning challenge
from the splits of the Park data. For the other classes, the model has
learning capabilities in-between. Table 3 shows the class-wise ac-
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Table 4: The average class-wise accuracy over 4 cross-validation
folds.

Scene Baseline MResNet-34 NYU

Beach 75.3% 85.3% 82.9%
Bus 71.8% 90.1% 91.7%
Café/Rest. 57.7% 75.0% 71.5%
Car 97.1% 97.1% 97.8%
City center 90.7% 90.7% 91.0%
Forest path 79.5% 93.3% 95.8%
Grocery store 58.7% 83.0% 86.1%
Home 68.6% 82.7% 79.4%
Library 57.1% 73.4% 68.7%
Metro station 91.7% 98.1% 98.2%
Office 99.7% 99.0% 97.8%
Park 70.2% 68.9% 74.4%
Resident. Area  64.1% 81.4% 83.1%
Train 58.0% 75.6% 71.7%
Tram 81.7% 90.4% 91.3%
Average 74.8% 85.6% 85.4%

curacy of the NYU model. Similar observations can be made for the
NYU model. In overall, the MResNet-34 has a mean of 8.02% in
the standard deviations while the NYU model has a mean of 8.54%.

Table 4 shows the average class-wise accuracies of the base-
line, the MResNet-34, and the NYU model over all four cross-
validation folds. The baseline model is a two-layer multi-layer per-
ception (MLP) with 50 hidden units for each layer. Our proposed
MResNet-34 model outperforms the baseline in 11 classes, and per-
forms equally well in 2 classes, and performs slightly worse in 2
classes. The MResNet-34 is 10.8% higher than baseline and 0.2%
higher than the NYU model.

4.2. Our submission to DCASE-2017 challenge

To obtain the evaluation results for submission to the DCASE-2017
challenge, we trained the MResNet-34 model and the NYU model
using all the development data provided in the DCASE-2017 chal-
lenge. The input patches were retrieved from the binaural setup.
The parameter settings and the training process are the same as what
we made for the four-fold cross-validation. The MResNet-34 and
the NYU model achieved 70% and 67.9%, respectively, on the final
unlabelled evaluation data set which were 9% and 6.9% higher than
the DCASE-2017 baseline model, respectively. The MResNet-34 is
2.1% higher than the NYU model.

5. CONCLUSIONS

We propose a deep CNN model with residual learning structure
(MResNet-34) for acoustic scene classification. We observe that
using the binaural setup has advantage over the monaural setup. It
indicates that the model benefits from the increase of the training
data size. The MResNet-34 model improves the baseline model by
10.8% and 9% more on development set and test set, respectively.
We also show that a shallower network can also work well on the
provided data size with higher accuracies on many class scenes than
the deeper MResNet-34. It might suggest that the deeper models
will gain more on the increase of data size and ensemble method of
many models of different depth is more desired.
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