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ABSTRACT

With the increasing use of a high quality acoustic devices to

monitor wildlife population, it has become imperative to develop

techniques for analyzing animals’ calls automatically. Bird sound

detection is one example of a long-term monitoring project where

data are collected in continuous periods, often cover multiple sites at

the same time. Inspired by the success of deep learning approaches

in various audio classification tasks, this paper first review previous

works exploiting deep learning for bird audio detection, and then

proposes a novel 3-dimensional (3D) convolutional and recurrent

neural networks. We employed 3D convolutions for extracting spa-

tial and temporal information simultaneously. In order to leverage

powerful and compact features of 3D convolution, we employ se-

parate RNNs, acting on each filter of the last convolutional layers

rather than stacking the feature maps in the typical combined CNN

and RNN architectures.

Index Terms— bird sound detection, deep learning, 3D CNN,

GRU, biodiversity

1. INTRODUCTION

There has been growing interest to assess the wide-ranging impacts

on biodiversity currently occurring around the globe. With the rapid

decline in global wildlife populations due to environmental pollu-

tion, there has been a progressive effort over the years for monito-

ring vocalizing species as valid indicators of biodiversity. Monito-

ring avian population in their habitats is one of such efforts since

birds are good ecological indicators of environmental changes [1].

For example, it enables researchers to obtain valuable information

such as habitat change, migration pattern, pollution, and disease

outbreaks in the environments. Because birds play a crucial role to

the environment, there is a considerable effort has been devoted to

focus for the conservation of birds.

In order to collect data at large spatio-temporal scales, ecolo-

gists often deploy acoustic monitoring devices to cover a large area

of the land. As a result, a large quantity of recordings is being ge-

nerated. These recordings, constitutes more than years of environ-

mental monitoring, can not be analyzed manually. In this regard,

ecoacoustics research [2, 3] has become one of the “big data” re-

search area and may benefit substantially from “big data” analysis.

Detecting bird sounds in audio recordings is one research problem

example where data are continuously collected from various sour-

ces in a wide range of locations and environments, including mobile

phones [4, 5].

In recent years, deep learning techniques have revolutionized

the applicability of machine learning in speech, vision, and text pro-

cessing. Significant improvements in many classification tasks are

reported using deep architectures, where deep convolutional neu-

ral networks (CNN) have been used extensively in computer vision

tasks. Since CNN learn filters that are shifted in both frequency and

time, it addresses the limitation of deep neural networks (DNN),

which lacks both time and frequency invariance. The use of deeper

and more efficient CNN (e.g., GoogLeNet, ResNet, DenseNet) is

also becoming popular and has shown state-of-the-art performance

in object detection and image classification challenges [6, 7, 8]. The

use of CNN is also popular in audio classification and speech re-

cognition applications where audio signal is often converted into a

spectrogram and treated as an input image to CNN.

Our novel contribution in this paper is the extension of conven-

tional convolutional recurrent neural networks using 3-dimensional

(3D) convolutional architecture for bird sound detection. The 3D

CNN architecture has been employed in video processing appli-

cation such as human action classification [9], audio-visual mat-

ching [10], and recently text-independent speaker verification [11].

In this work, we use 3D CNN to capture spatial information in time

from audio data stream. Also, 3D CNN is assumed to produce po-

werful and compact features compared to 2D CNN [12]. In order to

receive the most benefits from these features, we employ separate

RNNs, acting on each filter of the last convolutional layers rather

than stacking the feature maps in the typical combined CNN and

RNN architectures.

The rest of the paper is organized as follows. Section 2 dis-

cusses related work. Section 3 describes data and methods for bird

sound detection. Experimental results are presented and discussed

in Section 4. Finally, Section 5 concludes the paper.

2. RELATED WORKS

Currently, the state-of-the-art results for bird sound detection, and

also recognition are obtained with the use of CNN. Specifically,

CNN can act as a feature extractor which is shown to be superior

over hand-crafted features in many classification tasks [13]. Thus,

a mid-level representation of audio (i.e., a spectrogram) is popular

as an input feature since it contains high-dimensional information

(e.g., channel, environment). Despite promising detection results

when using sophisticated classifiers such as CNN, state-of-the-art

results can only be obtained if CNN are tuned carefully. This often

requires domain knowledge and the interpretation of model that are

well suited for bird data. The typical workflow for large scale bird
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Figure 1: 3D-CNN architecture for bird sound detection. A 3D convolutional neural networks with three convolutional layers followed six

teen recurrent layers and at the end one fully connected (FC) layer followed by softmax output layer. Input is a stack of 2-second audio clip.

sound detection and recognition using CNN consists of spectro-

gram feature extraction from audio recordings, and model training

and evaluation. There is a considerable amount of works for pre-

dicting the location of bird sound within the spectrogram. The aim

is to remove background noise and extract only parts contain bird

singing/calling [14]. This includes spectral enhancement stage and

image processing heuristics to discard non-bird sounds [15]. Even

though noise reduction techniques may work well for certain data-

set, bird sound localization is still a challenging task when there are

dominant man-made noises (e.g., traffic, human singing, vehicles)

in the audio clip.

A variety of CNN architectures have been explored for bird au-

dio detection and recognition tasks. In general, very deep CNNs

such as ResNet [7] and DenseNet [8] architectures achieve better

performance compared to the standard CNN model [16]. Howe-

ver, as shown in the previous BAD challenge, using a wide recep-

tive field in a conventional CNN configuration can also achieved

state-of-the-art results (bulbul submission). Other notable deep le-

arning architecture employed in BAD challenge is the combination

of CNN and RNN architectures (CNN+RNN) [17, 18]. In this case,

the CNN is used for local feature extraction and the recurrent layers

to model the long-term dependencies. For example, [18] used bi-

directional RNN (BRNN) to process feature maps of the last CNN

layer and achieved 88.41% AUC measure on the evaluation data.

Data augmentation strategy (i.e., frequency and time shift) to im-

prove the generalization of the network is also employed by many

teams, albeit with marginal improvement [17]. We also tested our

proposed 3D-CNN+RNN in the previous BAD evaluation set (post-

challenge submission) and achieved 88.95% AUC score, compara-

ble to the official state-of-the-art results published in the first chal-

lenge.

Table 1: Bird audio detection challenge 2 statistics in the develop-

ment set.

Dataset present absent total

freefield1010 1,935 5,755 7,690

warblrb10k 6,045 1,955 8,000

BirdVox 10,017 9,983 20,000

Total 17,997 17,693 35,690

3. DATA AND METHODS

3.1. Datasets

The bird audio detection challenge 2 used datasets released in previ-

ous BAD challenge with the addition of new datasets: (a) BirdVox

(BirdVox-DCASE-20k), and (b) Poland (PolandNFC). Each audio

clip is 10-second long and sampled at 44.1 kHz. The total number

of audio recordings for development and evaluation set are 35690

and 12620, respectively. The label for development set is 1 if any

bird sound is present and 0 if none. The statistics of the develop-

ment and evaluation sets are presented in Table 2.

3.2. Feature Extraction

We split 10-second audio clip into 5 × 2-second clips. A spectro-

gram (from 2-second clip) computed from sequences of Short-Time

Fourier Transform (STFT) of overlapping windowed signals is used

as the sound representation. A signal is framed using a window of

20 ms (882 samples). The STFT analysis is carried out using a

Hamming window, 50% overlap, 1024 FFT bins by zero padding.

Given the audio signal s(t), the complex spectrum can be expres-

sed as, S(n, f) = |S(n, f)|ejθ(n,f), where |S(n, f)| and θ(n, f)
are the magnitude and phase spectrum at frame n and frequency f ,

respectively. We constructed triangular-shape filters linearly spaced

in mel scale to convert a spectrogram to a Mel-spectrogram with the
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number of filters set to 80. The magnitude values are then conver-

ted into log magnitude, S(n, f) = log(|S(n, f)|. The input feature

shape for spectrogram is 5× 80× 200. The features were normali-

zed as input to 3D-CNN.

3.3. 3D convolutional recurrent neural networks

In essence, the 3D convolution is the extension of 2d convolution.

The 3D-CNN+RNN architecture proposed in this work consists of

3 convolutional layers. We use a receptive field of 3× 3× 3 follo-

wed by a max pooling operation for every convolutional layer. The

activation function is Rectified linear unit (ReLU). A batch norma-

lization layer [19] was employed for all the convolutional layers.

Dropout with rate of 0.5 was employed in convolutional layers. The

weights are initialized with Xavier initialization [20]. We employed

multiple GRUs where each feature map of the last convolutional

layer is fed to the GRU. Hence, we had a total of 16 separate GRUs

for 16 filters used at the last convolutional layer. We constructed

25 recurrent layers for each feature map, where 25 is the number of

time steps mapped from the 200 time steps in the original spectro-

gram. We used recurrent networks with 32 GRU cells. The output

for each RNN (many-to-one configuration) is concatenated and then

fed into a fully connected layer. The combined 3D-CNN and RNN

are optimized jointly by employing backpropagation algorithm. A

softmax layer with two nodes is used (bird vs non-bird). The net-

work is trained using RMSProp optimizer [21] with momentum of

0.9 and initial learning rate of 10–3. We used batches of 8 trai-

ning example to train our models. The binary cross-entropy is used

as a loss function. Tensorflow [22] is used to implement the mo-

dels. The system codes with the proposed methods is made availa-

ble in https://github.com/himaivan/BAD2.

4. EXPERIMENTS

4.1. Evaluation metric

The perfomance evaluation metric for bird sound classification is

reported in terms of Area Under the ROC curve (AUC) as suggested

in the evaluation plan.

4.2. Training

We tested different parameter combinations to decide the final ar-

chitecture to be used in the evaluation which include the number

of CNN layers {3, 4} and drop-out rates {0.5, 0.7}. For the first

training strategy, we trained our baseline model using 97% of the

total data. The 3% validation split is used to monitor the training

process and for selecting final models. We stopped the training af-

ter 150 epochs to avoid overfitting. Since the training data is large,

we did not perform with data augmentation strategy. We then se-

lected 5 models from different epoch with the highest accuracy on

the validation split and averaged the predictions. We also trained

our model using 3-way cross-validation strategy where in each fold

two sets were used for training and the other one for testing, and

averaged the predictions (hence, 15 networks were selected, five

models for each cross-validation fold).

5. RESULTS

Our proposed 3D-CNN+RNN obtained a preview score of 87.13%

when model is trained using the combined data. The 3-way cross-

validation results where in each fold two sets were used for training

Table 2: Stratified 3-way cross-validation results.

Train Configuration Test AUC

freefield1010 + warblrb10k BirdVox 63.1%

freefield1010 + BirdVox warblrb10k 85.9%

warblrb10k + BirdVox freefield1010 79.4%

model ensemble Evaluation data 88.7%

and the other one for testing obtained 88.70% AUC score on the

unseen evaluation data (via model ensemble method). Building a

robust deep learning model typically requires a large amount of la-

beled training data. However, obtaining many labeled data is an

expensive task and not always feasible. In future work, we will

investigate the method to generate labeled data via pseudo-labeling

method where approximate labels are produced from unlabeled data

using trained models.
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