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ABSTRACT 

This work describes our solution for the general purpose audio 

tagging task of the DCASE 2018 challenge. We propose ensemble 

of several Convolutional Neural Networks (CNNs) with different 

properties. Logistic regression is used as meta-classifier to pro-

duce final predictions. Experiments demonstrate that ensemble 

outperforms each CNN individually. Finally, proposed system 

achieves Mean Average Precision (MAP) score of 0.956 on public 

leaderboard, which is significant improvement compared to base-

line. 

Index Terms— audio tagging, DCASE 2018, convolutional 

neural networks, ensembling 

1. INTRODUCTION 

The goal of general audio tagging is to create models capable of 

recognizing variety of sounds. Those include musical instruments, 

vehicles, animals, sounds generated by some sort of human activ-

ity etc. Motivation for research in the field of artificial sound un-

derstanding can be found in potential applications such as security, 

healthcare (hearing impairment), improvements in smart devices, 

various music related tasks etc. Detection and Classification of 

Acoustic Scenes and Events (DCASE) challenge 2018 consists of 

several tasks which provide way to evaluate different methods for 

solving problems related to non-speech audio signals. Focus of this 

paper will be on task 2: “General purpose audio tagging of 

FreeSound content with AudioSet labels” which is hosted on 

Kaggle platform [1]. Dataset contains around 9500 training and 

1600 testing examples which belong to one of 41 unequally dis-

tributed classes (bus, gunshot, knock, flute, etc.). Audio files differ 

in length with duration ranging from 300ms to 30s. All samples 

were automatically annotated, but only portion of training set la-

bels were manually verified. Therefore, there is large variation in 

label quality which poses yet another problem to participants – to 

extract as much information possible from weakly labeled data. 

Another major issue is label density. It represents portion of audio 

in which tagged event is actually present. As one can imagine, la-

bel density can vary significantly, so creating models which can 

successfully tackle it is of high importance. 

        Though research in this area has recently expanded, related 

work can be found at previous editions of DCASE challenge. Al-

ternatively, related research can also be found in the area of Music 

Information Retrieval (MIR). Earlier research mostly relied on 

hand crafted features and shallow models. For example, in the first 

edition of DCASE in 2013 models like SVM [2] and bagging of 

decision trees [3] were used with variety of features. Similar ten-

dency can be found in MIR research where features were particu-

larly designed to capture timbral and rhythmic characteristics [4]. 

Later research shows obvious shift towards feature learning, more 

precisely, deep learning. Following their success in computer vi-

sion, convolutional neural networks (CNN) are extensively used 

for audio scene classification [5, 6] event detection [7, 8], music 

tagging [9] etc. One can use CNNs in different settings and on dif-

ferent input representations. Using raw audio with one-dimen-

sional convolutions is viable option, but most research relies on 

some sort of time-frequency representation and two-dimensional 

CNNs as it is typically expressive enough and less computation-

ally expensive. Widely used are mel-spectrograms, but Constant 

Q transform (CQT) also shows promising results [10]. Although 

computer vision inspired rapid growth of CNN usage, interpreta-

tion in audio domain fundamentally differs. While vertical and 

horizontal axes in images generally satisfy same properties and 

should be threated equivalently, time and frequency axes of audio 

signal represent different modalities. Therefore, there is room for 

domain specific filter design, which should capture interesting pat-

terns, improve CNN architecture efficiency and hopefully increase 

model performance. Several researchers already tried to exploit 

these facts, yielding competitive results in related areas. Depend-

ing on problem in question, approaches focus on modelling tem-

poral [11] and frequency [12] related features with horizontal and 

vertical filters respectively. Especially interesting for our dataset 

are wide architectures that incorporate parallel feature learning 

[13, 14]. In that setting, one should be able to use many different 

filter shapes and fuse them in later layers, which would enable 

model to learn much richer set of descriptors. Due to nature of our 

problem, mainly, large differences in acoustic properties of pro-

vided classes, parallel architectures could prove to be beneficial. 

      This paper describes our solution for DCASE challenge. We 

will evaluate several architectures and preprocessing techniques. 

Main goal is to design diverse set of classifiers and leverage those 

differences by stacking predictions of individual models. Paper is 

organized as follows. Validation, preprocessing and proposed 

models are described in section 2. Section 3 deals with evaluation 

and details of experimental setup. Finally, obtained results are pre-

sented in section 4. 

 

2. SYSTEM ARCHITECTURE 

This chapter gives overview of crucial aspects of proposed solu-

tion, including validation setup, data preprocessing and CNN ar-

chitectures. 
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2.1. Validation Setup 

One of the major decisions during machine learning system de-

velopment is configuration of train-validation split. It is common 

to use K-fold cross-validation, where model is trained on K-1 

folds and validated on remaining one. At the end, average score is 

used as performance estimate. However, in the case of provided 

dataset, there is large percent of samples which are not manually 

verified in the training set and none of them in the test set. Since 

validation should represent unseen data as close as possible, we 

choose to use only manually verified examples. Same split is used 

for all models, where 10% of data is used for validation. It is also 

worth mentioning that train and validation data have same distri-

bution of labels, but distribution of manually verified samples of 

different classes in training set is not uniform.  

2.2. Preprocessing 

In the introduction, it is pointed out that audio files have different 

length and consequentially don’t contain same amount of infor-

mation. Therefore, preprocessing should account for both fixed 

size input requirement of our models and information persever-

ance. Input audio length is predefined, and it varies between 4 and 

8 seconds for different models while shorter files are zero padded. 

Two representations are used: mel-spectrogram with 96 mel 

bands and constant Q transform with 96 or 110 bins. Longer files 

are split into chunks of predefined length with several overlap val-

ues and resulting spectrograms are converted to dB-scale (ampli-

tude is scaled relative to maximum value). Finally, obtained data 

is standardized. At test time, identical transformations are applied 

and results are generated as average of predictions of each chunk 

corresponding to the same file. Entire preprocessing was done us-

ing Librosa library [15].  

2.3. Network Architectures 

Ensembling is known to yield the highest benefits when predic-

tions of base models are less correlated. To fully exploit that fact, 

we propose couple of architectures with slightly different proper-

ties. 

        The first network is inspired by one of the top solutions of 

“Tensorflow Speech Recognition challenge” [16] and suggested 

by other participant of DCASE challenge [17]. Initial convolu-

tional layer has 64 filters of shape 7x3, followed by 4x1 max-

pooling layer. Next layer contains 128 filters of shape 7x1 and 

4x2 max-pooling with 2x2 strides. Finally, two convolutional lay-

ers with 128 filters and 1x5 and 5x1 shapes respectively are 

stacked before global-max-pooling layer. Two densely-connected 

layers with 64 neurons are used for additional feature extraction 

before softmax classifier. Activation function of each layer is rec-

tified linear unit, while every convolutional layer is followed by 

batch-normalization. Dropout of 0.25 is used before each dense 

layer for additional regularization.  

       The second architecture is proposed in [13]. It relies heavily 

on domain knowledge, by introducing sets of rectangular filters 

applied in parallel on input. For frequency related features, verti-

cal filters which cover 90% and 40% of domain are used with 

small temporal dimension. On the other hand, to capture temporal 

features efficiently, average pooling is applied over frequency 

axis of spectrogram and several 1D convolutional kernels are ap-

plied. Filter lengths are 165, 128, 64 and 32. Outputs of both fre-

quency and time related feature extractors are concatenated. Three 

2D convolutional layers with 512 filters are then applied, result is 

flattened and dense layer with 300 neurons followed by 0.4 drop-

out is added before output layer.  

        Additionally, to explore other aspects of rectangular filter de-

sign, new architecture is proposed. It is inspired by [12] and de-

tails are given in table 1: 

 

Table 1: Model 3 

Conv1: 48x (8x7)| 32x (32x 7)| 16x (64x7)| 16x (90x7) + BN 

Concatenate 

Max-Pooling (5x5) 

Conv2: 120x (2x2) 

Global-Max-Pooling 2D 

Dense1: 64 units + Dropout 0.2 

Dense2: 64 units + Dropout 0.2 

Dense3:  41 units + softmax 

 

Output of each branch in Conv1 layer has to be same, so that fea-

ture maps can be stacked. This is achieved by zero-padding input 

accordingly. All hidden layers use rectified linear unit as activa-

tion. 

        Combination of previously discussed ideas led to yet another 

model: 

 

Table 2: Model 4 

Conv1: 64 x (8x3)| 64 x (16x3)| 64 x (32x3) 

Max1:Max-Pooling (4x1) + BN 

Conv2: 128 x (8x1)| 128 x (16x1)| 128 x (32x1) 

Max2: Max-Pooling (4x2) + BN 

Concatenate 

Conv3: 128 x (5x1) + BN 

Conv4: 128 x (1x5) + BN 

Global-Max-Pooling 2D 

Dense1: 64 units + Dropout 0.2 

Dense2: 64 units + Dropout 0.2 

Dense3:  41 units + softmax 

 

The fourth model is using architectural designs of first network, 

but with parallelism introduced in models two and three. Instead 

of single convolutional layer before concatenation, it is using two 

layers per branch. Same padding is used in those two layers to 

avoid dimensionality mismatch. Strides of max-pooling layers are 

2x1 and 2x2 respectively. Similarly, hidden layers use ReLU ac-

tivation. 

         Models typical for computer vision can be used to maximize 

diversity. Concretely, we use Inception V3 [18] and MobileNet 

[19] with weights pretrained on ImageNet. Those are imple-

mented using Keras [20] library. Classification layer is removed 

from both architectures and two layers with 64 units and 0.2 drop-

out are added before softmax layer with 41 units. Additional pre-

processing steps are required for these setups. We had to resize 

inputs to 150x150 for Inception and 160x160 for MobileNet to 

match implementation requirements. Also, number of channels 

had to be matched, so mean is calculated across entire training 

data and added as second and third channel to each sample. These 

models require more computing time, but add significant value to 

ensembles. We will refer to Inception as model 5 and MobileNet 

as model 6 in the remainder of the paper. 
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3. EXPERIMENTAL DESIGN 

3.1. Evaluation 

Organizers split test data in public and private part. Participants 

submit their predictions for entire test set, but they can only see 

public score (contains around 19% of test data). Submissions are 

evaluated using mean average precision: 

 

         𝑀𝐴𝑃 =  
1

𝑁
∑ ∑ 𝑃(𝑗)

𝑚𝑖𝑛(𝑛,3)

𝑗=1

𝑁

𝑖=1

         

 

 

(1) 

where 𝑁 is number of audio files used for scoring, 𝑛 is number of 

predictions per file and 𝑃(𝑗) is precision at cutoff 𝑗. Private score 

is released after competition ends. 

3.2. Hyper-parameters and data augmentation 

Input is split into patches of length 4s, 5s or 6s with 1s overlap, or 

8s and 2s overlap. Experiments on shorter inputs gave worse 

scores and didn’t add any value to ensembles, so they are dis-

carded. Networks were trained using categorical cross-entropy as 

loss function. Adam is used as optimizer, with initial learning rate 

of 0.001. Mini-batch size was 32 or 64, depending on model and 

input size. During training, we monitor validation loss and save 

currently best performing model. If validation loss doesn’t de-

crease for seven epochs, it is reduced by factor of 0.5. Early-stop-

ping is used to avoid overfitting. Training stops after 20 epochs 

passed from last improvement. Maximum number of epochs for 

all models is 250.  

        Data augmentation is another way to reduce overfitting. 

Transformations are applied on original data points, artificially 

enlarging dataset. It’s crucial that augmentation techniques do not 

change true label of particular sample, otherwise performance 

may decrease. Concretely, we used random width shift and zoom 

with maximum range of 0.1. Another interesting augmentation 

technique which significantly reduced overfitting is random eras-

ing [21]. It works by randomly selecting rectangular area on input 

image and changing its values with random numbers. Finally, 

most important augmentation technique used is mixup [22]. It is 

implemented by creating virtual feature-target pairs (�̃�, �̃�): 

 

�̃� = 𝜆𝑥𝑖 + (1 − 𝜆)𝑥𝑗  (2) 

�̃� = 𝜆𝑦𝑖 + (1 − 𝜆)𝑦𝑗  (3) 

 

where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are pairs drawn randomly from train-

ing data, while 𝜆~𝐵𝑒𝑡𝑎(𝛼, 𝛼) . Therefore, parameter 𝛼  affects 

regularization strength (larger 𝛼 implies stronger regularization). 

Mixup is encouraging linear behavior between training examples 

which has other positive side effects. Original paper shows that it 

also improves robustness to corrupted labels. As discussed previ-

ously, majority of training examples were not manually verified 

(accuracy of those labels is estimated to be at least 65-70% per 

class), so mixup allows us to handle label noise with minimal ad-

ditional computational requirements. These desirable properties 

made mixup crucial part of every pipeline. Regarding parameter 

value, 𝛼 between 0.2 and 0.3 was found to be optimal across dif-

ferent architectures. Every augmentation technique is performed 

during training phase. 

3.3. Ensembling 

Once models are configured and trained there are many ways to 

leverage generated predictions. Calculating arithmetic or geomet-

ric mean are two obvious ways, since they don’t add additional 

complexity and almost always improve performance. However, 

once we have sufficiently diverse set of base predictions, real 

gains come with stacking. Stacking is performed by using predic-

tions as features for meta-model. It is often done in cross-valida-

tion setting, but because of train-validation split used by level-1 

models, we are constrained to use only 10% of data for meta-

model training. Predictions of individual classifiers are stacked in 

columns for both validation and test set. For example, each of ten 

models would have 41 (number of classes) predictions per exam-

ple and resulting feature matrix would have 410 columns. Valida-

tion data then becomes new training set and stratified 5-fold cross-

validation is used for training. Experiments have shown that lo-

gistic regression is suitable candidate for meta-classifier. Princi-

pal component analysis (PCA) is used to reduce dimensionality of 

data in each of K iterations. Predictions of meta-model on valida-

tion data are combined and MAP score is computed to produce 

new performance estimate. Finally, trained meta-model is used to 

generate test set predictions. 

4. RESULTS 

In this section, results of proposed architectures are presented and 

discussed. Table 3 summarizes important information regarding 

models and their scores on validation dataset: 

 

Table 3: Models, preprocessing and scores 

Id Length Overlap Transformation  MAP   

1 4s 1s Mel-spec 96 bands 0.916  

1 5s 1s CQT 110 bins 0.942  

1 6s 1s Mel-spec 96 bands 0.919  

1 8s 2s CQT 110 bins 0.929  

2 4s 1s CQT 96 bins 0.945  

2 5s 1s Mel-spec 96 bands 0.926  

3 4s 1s CQT 96 bins 0.901  

4 4s 1s CQT 96 bins 0.946  

5 4s 1s CQT 96 bins 0.93  

5 5s 1s CQT 96 bins 0.927  

6 4s 1s CQT 110 bins 0.955  

 

For clarity, models are specified only through ids, with respect to 

order of presentation. We can come up with several interesting 

conclusions by inspecting these values. Experiments have shown 

that CQT outperforms mel-spectrogram for most models. Also, 

inputs of length 4s and 5s seem to be optimal, while larger number 

of bins certainly helps, but also increases computation time. Be-

cause of limited number of submissions, some base models were 

not evaluated on public leaderboard, but it’s worth noting that 

leaderboard score was consistently lower for submitted predic-

tions. Since validation setup has proven to be directionally stable 

(lower score on validation, usually meant lower score on public 

leaderboard and vice versa), predictions were mostly submitted 

after ensembling.  

       Organizers provided baseline model for comparison with pro-

posed solutions. Its inputs are log scale mel-spectrograms with 

windows of length 0.25s and hop size of 0.125s. Model contains 
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3 convolutional layers before output softmax layer. It achieves 

MAP of approximately 0.704 on public leaderboard. 

      Final solution is ensemble of 11 proposed configurations. 

Meta model is logistic regression with regularization parameter 

𝐶 = 4. It is trained on 120 features, after PCA dimensionality re-

duction. It achieves MAP of 0.971 on validation data and 0.956 

on public leaderboard, which is an improvement over level-1 

models and baseline. 

5. CONCLUSION 

This paper proposes ensemble of convolutional neural networks 

for classification of general audio signals. We introduced several 

architectures, preprocessing techniques and validation setup in or-

der to get diverse set of base predictions. Logistic regression is 

then used as meta-model to obtain final output. It has been shown 

that it outperforms individual models substantially, which demon-

strates that original architectures really provide sufficiently di-

verse information. Further improvements might be possible by in-

cluding different non-deep learning models with hand crafted fea-

tures, additional data augmentation or by adding more pre-trained 

models to the ensemble. 
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