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ABSTRACT
This technical paper presents an approach for the 2018
acoustic scene classification challenge (DCASE 2018) task 5.
A sequence of audio segments are observed by an array with
4 microphones. The task is to suggest a multichannel pro-
cessing to classify the audio signals to one of 9 pre-defined
classes. The proposed approach combines a deep neural
network with scattering transform. Each audio segment is
first represented by two layers of scattering transform. The
4 denoised transforms of each of the two layers are combined
together. Each of the fused layers are processed in parallel
by two neural networks (NN) architectures, RESNET and
long short-term memory (LSTM) network, with a joint fully
connected layer.

Index Terms: Scattering transform, neural networks,
RESNET, LSTM.

I. INTRODUCTION
Acoustic scene classification (ASC) is a subtask of the

more general computational auditory scene analysis area of
research [1]–[3]. It attracts the attention of researchers in
machine learning and has been applied into surveillance,
navigation and context-aware services, where computational
algorithms try to outperform humans when discriminating
between sound scenes. Recently, there is an increased inter-
est in smart environments, where the aim is automatically to
understand the home scene using different types of sensors
including microphones .

In the DCASE 2018 challenge task 5 [4], the goal is to
classify multi-channel audio 10 seconds segments observed
by an array with four microphones, which are located at an
unknown position in a room, into one of pre-defined classes.
The classes are daily activities (e.g., cooking, working,
watching TV, etc.). In the data set no overlapping of activities
are present, that is, each segment contains only one of the
classes. Since the positions of the 4 microphone arrays at
the test set are unknown in advance, and may be different
from the positions of the 7 microphone arrays in the training
set, classifying based on the absolute locations of the sounds
may not be beneficial. Therefore, the focus of the task is to
exploit other multichannel processing approaches which are
independent of the sensors’ locations.

The basic idea of our proposed approach is to represent the
audio segment acquired by each microphone using scattering
transform, and then combine the transforms of all channels
as an input to a neural network (NN). The widely used
representation of audio signals is the Mel Frequency Cepstral
Coefficients (MFCC) [5], usually used for speech signals.
The features are based on averaging the signal in the Short
Time Fourier Transform (STFT) with Mel scale filters which
are logarithmically spaced in the frequency domain, and
then applying a cosine transform. However, the MFCC
representation is based on the assumption that the signal
is stationary over a short time interval (usually, between 20
msec to 40 msec). Thus, it lacks the ability to focus on the
non-stationarity of the audio over larger time frames. The
scattering transform [6], [7] overcomes this shortcoming by
considering a much larger time frames for processing the
data using 2 layers of wavelets filters, where each layer is
followed by the modulus operator. The MFCC features are
similar to the coefficients of the first order of the scattering
transform. Therefore, the representation of signals using the
first and the second orders of the scattering transform extends
the MFCC representation.

Mathematically speaking, denote by xk(t) the observed
sound signal by the kth microphone expressed as

xk(t) = sk(t) + v(t) , 0 ≤ t ≤ T , k = 1, . . . , 4 (1)

where sk(t) is the audio segment associated with a specific
(but unknown) class, v(t) is the additive noise and inter-
ference, and T = 10 [sec] is the observation interval. The
observed signal is processed in overlapping time frames of
length T ′ producing the signals yk(t), and then processed
by the scattering transform which is a cascade of wavelet
convolutions and modulus operators. The first scattering
transform is given by

S1,k(t, λ1) = |yk(t) ∗ ψλ1 | ∗ φ(t) (2)

where φ(t) is a low pass filter with a frequency bandwidth
2π/T ′. The wavelet filter bank is defined by

ψλ(t) = λψ(λt) (3)

where the wavelet ψ(t) is a band pass filter with a central
frequency normalized to one, λ = 2j/Q, j is a positive



Fig. 1. An example of the spectrogram of an audio segment
(top), the first layer of the scattering transform (center), and
second layer of the scattering transform (bottom). The left
plots are associated an example of an audio segment of the
class ”working”, while the right plots are associated with an
example of an audio segment of the class ”cooking”.

integer, and Q is the number of wavelets per octave. The
bandwidth of the wavelet is in the order of 1/Q. As a result,
the filters are logarithmically spaced in he frequency domain.
The second order scattering transform is

S2,k(t, λ1, λ2) = ||yk(t) ∗ ψλ1
| ∗ ψλ2

| ∗ φ(t) (4)

The top plot in Figure 1 presents the spectrogram of the an
audio segment associated with the ”Watching TV” class and
”Cooking class”. The sampling frequency of the signal is
16 [KHz] and the duration of the segment is 10 [sec]. The
first and second layers of the the scattering transform of the
audio segment are also presented.

The output of this representation contain 4 matrices,
{S1,k}4k=1 associated with the first order scattering trans-
form, and 4 matrices (with the same number of columns but
with larger number of rows) {S2,k}4k=1 associated with the
second order scattering transform. The 4 matrices associated
with each of the two scattering transform layers are fused
by averaging their values, i.e.,

S̄1 =
1

4

4∑
k=1

S1,k , S̄2 =
1

4

4∑
k=1

S2,k (5)

An optional step is to denoise these matrices using singular
value decomposition (SVD), or any other denoising proce-
dure. For example, the matrix associated with the first layer

Fig. 2. The block diagram of the proposed approach.

is approximated using SVD as (the matrix associated with
the second layer is approximated similarly)

S̄1
∼=

K∑
i=1
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i uiv

T
i

where ui, vi, and σ2
i are the left singular vectors, the right

singular vectors and the singular values of the decomposi-
tion, respectively, and the K is the number of the dominant
singular values determined as

K = argmink
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2
i∑K

k=1 σ
2
k

< η (6)

where η is a predefined threshold (e.g., η = 0.9). These av-
eraged matrices are used as inputs to NNs as explained next.
The block diagram of the proposed approach is presented in
Fig. 2.

II. NEURAL NETWORK ARCHITECTURE
Each of the averaged scattering transforms S̄1 and S̄2 are

used as input to two branches of the NN. The first branch
is a modified RESNET architecture [9] with 32 residual
convolutional layers with batch normalization (Fig. 3). The
second branch is an LSTM architecture which sequentially
learns the context between time frames in a given scattering
transform representation of an audio segment. A time aver-
aging is performed following the LSTM layer. The complete
architecture of the proposed ANN is detailed in Fig. 3 and in
Fig. 4. The four NN branches have two joint fully connected
layers. The final classification is the output of a single soft-
max layer.

We also propose second architecture with a small mod-
ification to the RESNET branch. replace the first 7 × 7
convolutional layer with 1D convolution layer over the
feature dimension, this modification causes a reduction of
the 3× 3 convolutional layer to 1× 3 .

III. EVALUATION RESULTS
The development data set contains 72, 984 audio segments

each of 10 seconds length, partitioned into 4 different train-
ing and test groups (termed as folds). The data set consists of



Total (without denoising) Total (with denoising)
class 1d 2d 1d 2d

Absence 83.59 83.95 83.12 84.73
Cooking 95.93 95.47 94.46 94.20

Dishwashing 82.10 78.00 76.64 73.31
Eating 88.87 89.68 86.16 87.13
Other 55.36 55.88 52.35 54.22
Social 94.99 93.97 94.55 94.06

Vacuum 100.0 100.0 100.0 100.0
Tv 99.74 99.40 99.73 99.77

Working 84.61 85.22 83.94 85.09
F1 87.24 86.84 85.67 85.82

Table I. Classification F1 score for 1d convolutional layer and for 2d convolutional layer with and without denoising.

Class Absence Cooking Dishwashing Eating Other Social Vacuum Tv Working
Absence 0.853 0.001 0 0.007 0.171 0.003 0 0 0.093
Cooking 0 0.968 0.022 0 0.013 0 0 0 0
Dishwashing 0.001 0.024 0.902 0.003 0.004 0 0 0 0
Eating 0 0 0.017 0.834 0.008 0 0 0.001 0.001
Other 0.007 0.007 0.025 0.024 0.456 0.002 0 0 0.013
Social 0.001 0 0.02 0 0.017 0.968 0 0 0
Vacuum 0 0 0 0 0 0 1 0 0
Tv 0 0 0 0 0 0.015 0 0.998 0
Working 0.138 0 0.014 0.101 0.331 0.012 0 0 0.892

Table II. Confusion matrix of the development set for fold1 for the case of a 2d convolutional layer .
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Fig. 3. Schematic description of the proposed neural network
architecture.

9 different classes which are Cooking, Dishwashing, Eating,
Social activity, Vacuum cleaning, Watching TV, Working
(typing, mouse click, ...), Absence (nobody present in the
room), and other (a person is present but not doing any
relevant activity). The model is evaluated according to a four-
fold cross-validation scheme. Per-class F1 scores are com-
puted on the test set for each audio segment independently.
Finally, the overall F1 score is calculated by averaging the
F1 scores of the different four folds.

The confusion matrix for fold1 is presented in Table II. As
can be seen, most classes are classified with high accuracy
except class ”Other”, which its associated segments are also
classified to the class ”Absence” and the class ”working”.
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Fig. 4. Description of the building block of the RESNET
branch detailing the blocks marked in color in Fig. 3.

All the audio segments of the classes ”TV” and ”Social”
are correctly classified, which emphasize that as expected
scattering transform succeeds in classifying these kind of
speech signals, but also succeeds to classify other non-speech
audio signals.

IV. CONCLUSION
We proposed a method to classify audio segments ob-

served by an array with 4 microphones into one of 9
predefined classes. The method represents the data segment
using two layers of scattering transform. The transforms
are processed in parallel by RESNET and LSTM neural
networks with a joint fully connected layer.
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