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ABSTRACT

For acoustic scene classification problems, conventionally Convo-
lutional Neural Networks (CNNs) have been used on handcrafted
features like Mel Frequency Cepstral Coefficients, filterbank ener-
gies, scaled spectrograms etc. However, recently CNNs have been
used on raw waveform for acoustic modeling in speech recogni-
tion, though the time-scales of these waveforms are short (of the
order of typical phoneme durations - 80-120 ms). In this work, we
have exploited the representation learning power of CNNs by using
them directly on very long raw acoustic sound waveforms (of dura-
tions 0.5-10 sec) for the acoustic scene classification (ASC) task of
DCASE and have shown that deep CNNs (of 8-34 layers) can out-
perform CNNs with similar architecture on handcrafted features.

Index Terms— DCASE-2018, Convolutional Neural Net-
works, Representation Learning, Raw-Waveforms, Acoustic Scenes

1. INTRODUCTION

Sound contains a variety of information that humans use to un-
derstand their surroundings. Even if a person is visually impaired
he/she can perceive or recognize the surroundings just by listening
to the nearby sounds. For instance, sound of birds chirping and
kids playing is most likely to be a park scene and sound of cars
honking and people shouting can be a typical traffic scene. Sounds
carry perceptual dimensions that cannot be easily defined in words,
such as for example, it is hard to describe what water sounds like
as it falls, e.g. the sound of a waterfall. Such sound perception
and recognition capabilities can be gained only from experience,
and this makes the problem of creating an automated sound recog-
nition system even more difficult since the information contained in
any sound can be fairly complex in the form of acoustic-signatures
which have rich spectro-temporal evolution with various acoustic
correlates such as superpositions of multiple timbral, pitch, loud-
ness attributes and their temporal profiles.

The DCASE-2018 Task1(a)- Acoustic Scene Classification
(ASC) aims to classify a test recording into one of the 10 predefined
classes that characterizes the environment in which it was recorded.
The data-set used for this task is TUT Urban Acoustic Scenes 2018
data-set. It consist of 10 acoustic environment scenes, such as for
example: airport, urban park, travelling by an underground metro,
indoor shopping mall etc. The sounds were collected from Euro-
pean cities; for a same scene different locations were considered
for recording the sounds. The dataset consists of 10-seconds au-
dio segments from 10 acoustic scenes. Each acoustic scene has 864
segments (144 minutes of audio) comprising a total of 24 hours of
audio. The Baseline system provided by the organizers implements
a CNN approach and the features used were log mel-band energies,

which were extracted from the 10 second segment; the network con-
sists of 2 CNN layers and 1 fully connected layer to classify the in-
put sound segments into class labels. The performance achieved by
their baseline system is 59.7% while using the hand-crafted features
with parameters 40 bands, 40ms frame-size with 50% hop length.

2. DEEP CNN ON RAW ACOUSTIC WAVEFORM

Recent vision tasks show that it is possible to results comparable to
huamn recognition using only convolution layers [1]. While CNNs
have been routinely and successfully employed on raw images,
with regard to speech and audio recognition problems, conven-
tional CNNs have been applied on hand-crafted ‘short-time spec-
tral’ features extracted from the raw speech/audio waveforms, such
as the Mel Frequency Cepstral Coefficients (MFCCs), mel filter
bank energies, spectrographic time-frequency representations etc.
[2]. However, as a major departure to this, there have been attempts
to apply CNNs directly on raw speech waveforms for acoustic-
modeling in speech recognition [3, 4], highlighting the ability of
CNNs to perform representation learning from the waveform to
yield abstract features at deeper layers, which also could represent
short-time spectral information (like the hand-crafted features) but
which are optimally learnt within the entire network which consists
of early CNN (as representation layers) and final DNN (as discrim-
inative layers). These CNNs however use raw waveforms of very
small durations, typically of the order of phoneme durations which
are typically 80-120 ms, as the objective here is to do acoustic mod-
eling of phonetic classes.

In yet another major departure, a recent study shows that sim-
ilar CNN architectures can be used to model and classify environ-
mental sounds using 1-dimensional CNNs on raw sound waveforms
[5] and sample level CNNs for music classification [6] with results
comparable to MFCC features, with the important contribution that
the input waveform durations are very long (e.g. up to 4 secs). In-
spired by these work [5, 6], we attempt to follow a similar approach
for the DCASE-2018 challenge; to the best of our knowledge there
has been no prior work of using raw-waveform as input features in a
CNN setting for the DCASE acoustic scene classification challenge.

In the following, we outline the salient aspects of our CNN ar-
chitecture, as depicted in Fig. 1. The figure corresponds to an input
waveform of 10 seconds (input vector dimension 80000) to the input
layer starting at the top, progressing through the layers, and ending
with a soft-max based discriminative final layer in the bottom for a
10-class audio-scene classification.

2.1. Salient aspects of our model

1. Long input waveform sizes and deep layers: Our model
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Figure 1: Proposed architecture of fully convolutional network for
raw-waveform inputs.

is based on a fully convolutional design. Acoustic scene
sounds have information specific to the sound class, dis-
tributed over the entire time evolution of the sound, repre-
senting a unique and distinctive ‘acoustic-signature’ of the
sound-class which helps perceive the idiosyncratic nature of
the sound. This translates to a classification scenario where
the modeling/classification system needs to use feautres or
learn representations or perform classification on such fea-
tures over long time scales, with longer time scales enhanc-
ing the performance, as the evidence discriminating a class
from others is available over such increasing time scales.
In keeping with this observation, we use long acoustic raw
waveforms (0.5 to 10 sec)as input to the CNNs, and propor-
tionately require deep CNNs (from 5 to as high as 34 layers)
to facilitate representation learning from such long dimen-
sional inputs (e.g. 10 sec of raw waveform translates to an
input feature dimension of 80000 to the 1st layer of CNN, at
8KHZ sampling of the sound waveform) across these deep
layers to finally yield reduced dimension feature vectors that
are sufficiently discriminative in the final layer of the CNN.

2. Kernel sizes: To train such deep networks we use small
kernel size of 3, which in-turns reduces the computation cost
by cutting down the model parameters. In the initial layer,
we use a large kernel size of 80; to reduce the temporal res-
olution in this initial layer we use large convolution and max
pool strides which cuts down the computational cost for the
rest of the network. A size of 80 representing the recep-
tive field of the initial convolutional layer corresponds to an
input waveform duration of 10ms (if the input waveform is
sampled at 8kHz), which is of the same order of window
sizes preferred for short-time spectral representations such
as MFCCs. The initial layer performs a convolutional fea-
ture learning on such 10ms kernels and further builds more
abstract and complex features in subsequent layers. As we
go deeper, the number of filters are increased to extract more
and more complex features. We use rectified linear units for
lower computation cost as used in [7].

3. Fully convolutional network: Recent trends in vision tasks
show that eliminating the fully connected layer, reduces
the parameter space significantly. It also helps us to know
whether given convolutional layers have the capacity to learn
discriminative features. Using the same idea from vision

tasks, we eliminated the fully-connected layer and used
global average pooling as used in [1], [5] for final classi-
fication. Thus, by removing the fully-connected layer, the
reduced parameter space makes it possible to train very deep
networks and facilitate more discriminative representation
learning by CNNs with increasing depth, such as we show
is necessary to handle long input waveforms (i.e. large input
vector dimensions).

4. Batch normalization: For deep layered architectures the
major issue is exploding and vanishing gradients; to over-
come these issues, we use ‘batch normalization’ where we
normalize the output of a previous layer so that the gradients
are stable. This allows us to train very deep networks e.g.
up to 34. As suggested in [8], we use batch normalization
to the output of convolutional layer and then pass the stable
gradients to ReLU non-linearity as input.

5. Residual Learning: Even with batch normalization, it be-
comes difficult to train very deep networks, so researchers
added identity/skip connection inside the network so that this
identity/skip connection helps the gradient flow to the initial
layers. Another motivation to add this kind of connection
was to learn the residual left after modelling some part. [9]

3. EXPERIMENT DETAILS

We used TUT Urban Acoustic Scenes 2018 data-set described
above. The partitioning was done as described by the challenge or-
ganizers in order to make results reported with this dataset uniform,
such that the segments recorded at the same location are included
into the same subset - either training or testing; accordingly, the par-
titioning is a 70-30 split of the number of segments in training and
test subsets while taking into account recording locations.

For the sake of enhanced computational speed, the data which
was originally sampled at 48kHz was downsampled to 8kHz. No
data augmentation was done. We used the CNN models using Adam
[10], a variant of stochastic gradient descent that adaptively tunes
the step size for each dimension. We run each model for 100 epochs.
The weights in each model are initialized from scratch without any
pretrained model. We use ‘Glorot’ initialization [11] to avoid ex-
ploding or vanishing gradients. All weight parameters are subjected
to L2 regularization with coefficient 0.0001. Further, we also used
ReduceLROnPlateau - a Keras library function which reduces the
learning rate by a factor of 2-10, once learning stagnates; for this,
we used a patience value of 10 epoch. Model performance was eval-
uated on validation set after every epoch, and the best performing
model was selected for submission, as well as the results reported
here. All experiments were conducted on the proposed system im-
plemented using NVIDIA QUADRO P6000, with Nvidia CUDA
cores 3840 and system RAM of 32 GB on ‘Paperspace’ cloud ser-
vice.

3.1. Input Waveform Duration

As pointed out in Sec. 2.1, Item 1, each sound class has a unique
and distinctive ‘acoustic-signature’ that helps perceive the sound
class discriminatively over other competing sound classes, and this
signature manifests as a time-evolution of short-term spectral in-
formation. The longer this signature is perceived, the stronger the
discriminative information and this leads to the engineering require-
ment that a classifier needs to extract features (or learn representa-
tions) from and perform a classification on long sequences of the
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Figure 2: Effect of input waveform duration on CNN performance
for different depths: M5, M8 and M11

sound waveform. This translates into feeding the CNN with long
raw waveforms as a input vector, with the waveform samples con-
stituting the components of such an input vector. At a given sam-
pling rate (e.g. 8 kHZ here), longer durations correspond to large
input vector dimensions (e.g. 1 sec of waveform corresponds to a
vector of dimension 8000)

As hypothesized that longer input waveform would offer en-
hanced representation and discriminative power, we demonstrate
the effect of waveform duration (input vector dimension) on our
CNN system by using 5 durations (0.5s, 1s, 2s, 5s, 10s). For ex-
ample, in a 2s input, one original 10s audio file represented as (1,
80000), i.e. 1 audio clip of 10 secs or 80000 samples is divided
into five 2s audio files represented as (5,16000). For each duration,
CNNs of different depths 5, 8, 11, 15, 18 and 34 are trained, and
referred to as M5, M8, M11, M15, M18 and M34.

Fig. 2 shows the CNN %classification accuracy (in the left y-
axis) on the test set (in a 70:30 split) for durations (0.5 to 10 secs)
for CNN depths M5, M8 and M11.

We note the following from this figure. For M5 (smallest depth
considered), the performance increases from 0.5 to 2 secs, reaching
a peak of 57% and thereafter dropping to less than 35% with in-
creasing duration up to 10 sec. While it is expected that increasing
duration should help, the performance decreases for durations > 2
sec mainly because the CNN is shallow at depth of 5 and not suffi-
cent for adequate representation learning for good discrimination at
the 6th layer. This shows clearly, when we consider the performance
for increased depths M8 and M11 - the accuracy progressively in-
creases with duration, reaching 63.94% and 60.96% respectively
for 8 and 11 depths, at duration 10 sec. The performance for both
depths easily cross the Challenge’s baseline performance of 59.7%
right at 5 sec, and the CNN on waveforms outperforms the baseline
59.7% at 10 sec durations by as much as 4% absolute. The linear in-
crease in dimension with input waveform duration can be seen from
the right y-axis, with a 10 sec input corresponding to very large di-
mension of 80000. The progressive saturation nearing 10 sec also
indicates that these durations might be adequate to sufficiently rep-
resent and discriminate the audio class from other classes, as well
as the fact that larger input dimensions seem to progressively need
larger depths for successive representation learning across layers
until the discriminative layer.

In general, this figure clearly demonstrates that for better dis-
crimination we need long waveform inputs and corresponding large
input dimensions, which in turn require deeper architectures. In
subsequent experiments outlined below, involving i) performance

Figure 3: CNN performance showing: a) effect of CNN depth (5
to 34) for input waveform duration 10 sec and b) comparison with
MFCC

for very deep CNNs (up to 34) and ii) to compare with hand-crafted
features (MFCCs), we use the 10 sec durations, as this clearly per-
forms the best among the durations considered in this experiment
shown in Fig. 2.

3.2. CNN Depth

As already emerging from the above experiment, CNN depth (for
a given duration) offers better performance, mainly due to the en-
hanced representation learning of more discriminative features. To
isolate and demonstrate this clearly, we study the performance of
CNN for input waveform durations fixed at 10 sec, and with depths
varying as 5, 8, 11, 15, 18 and 34, with the 34 layer being a very
deep Residual Network (34-res). The results are shown in Fig. 3,
with CNN classification accuracy in the left y-axis and the number
of parameters in the network on the right y-axis for different depths
(labeled ‘Models’) in the x-axis.

The following can be noted. A shallow network (depth 5) has
poor performance of 35%, which increases steeply with depth hav-
ing a 63.94% accuracy at depth 8, and plateauing at depths 11 and
15 before decreasing marginally and plateuing again for depths 15,
18 and 34. The performances for depths 8, 11 and 15 exceed the
Challenge baseline of 59.7%. Increasing depth causes significant
increase in the number of parameters to be learnt (ranging from
0.5 to 4 million), and this in turn has the effect of saturation or
plateauing observed for increasing depth, as the increasing number
of parameters to be learnt from a given training data limits the op-
timality realizable. It can be expected that with deeper layers and
sufficient data, the performance can progressively increase rather
than plateau. The enhanced representation learning at each succes-
sive layer can be viewed as reducing the intra-class variability or
scatter and also increasing the inter-class separability (with a resul-
tant increase in the Fisher discriminant ratio with depth).

The table in Fig. 4 shows the performance of raw-waveform-
CNN indicated in Fig. 3, giving along side the training time per
epoch.



Detection and Classification of Acoustic Scenes and Events 2018 Challenge

Figure 4: Test accuracies and training time per epoch for models in
Fig. 3

Figure 5: Comparison of CNN performance on raw-waveform and
MFCCs

3.3. Comparison of raw waveform and MFCCs

Fig. 3 also shows a comparison of the waveform based CNN perfor-
mance with CNNs on handcrafted features (MFCCs) for 10s input
waveforms. The MFCCs were derived with 40ms framesize and 160
% hop-length and 40 bands to calibrate it according to the baseline
instructed features. The MFCCs (blue line) for depths 3, 5, 8 and
11 can be seen to plateau at 50%, while the proposed waveform-
based-CNN outperforms it at 63.94% for depth 8 (a 14% absolute
improvement) and consistently at all depths > 8 at 58% (by as
much as 8% absolute).

The table in Fig. 5 shows the performance of CNN on raw-
waveform comparing it with the performance on MFCCs given
along side for depths 5, 8 and 11 (as indicated by the blue-line Fig.
3).

4. CONCLUSION

For the DCASE Acoustic Scene Classification Task, we have pro-
posed and used CNNs directly on long raw audio waveforms (of du-
rations up to 10 sec), demonstrating various aspects of the system
such as, a) the advantage of enhanced performance with input wave-
form duration, b) better performance than the Challenge’s baseline

of 59.7%, c) the need for deep CNN architectures (e.g. 8-34) to
perform adequate representation learning on very long input wave-
forms (up to 10 sec) and d) that deep CNNs (of 8-34 layers) can
outperform CNNs with similar architecture on handcrafted features
(MFCCs) with up to 14$ (absolute) better classification accuracies.
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