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ABSTRACT

This report describes a submission for IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events
(DCASE) 2018 for Task 1 (acoustic scene classification (ASC)),
sub-task A (basic ASC) and sub-task B (ASC with mismatched
recording devices). We use two wavelet-based features in a score-
fusion framework to achieve the goal. The first feature applies
wavelet transform to log mel-band energies, while the second does
a high-Q wavelet transformation on the frames of raw signal. The
two features are found to be complementary so that the fused system
relatively outperforms the deep-learning based baseline system by
17% for sub-task A and 26% for sub-task B with the development
dataset provided for the respective sub-tasks.

Index Terms— Constant-Q transform, fusion, mel-scaled fea-
tures, SVM, wavelet transform

1. INTRODUCTION

Acoustic scene classification (ASC) [1] is a closed-set classifica-
tion task, where semantic labels are assigned to audio streams ac-
cording to the environments they represent. These environments
could be indoor, outdoor, or a moving vehicle. Applications of ASC
can be in context-aware and intelligent wearable devices, hearing-
aids, robotic navigation systems, and audio archive management
systems.

With application point of view, it is required that the machine
listening algorithms be such that they are able to work with differ-
ent types of audio, that is, speech, music, as well as environmental
sounds. In the system presented in this report, we use some spec-
tral and temporal features from audio processing fields. The mo-
tivation behind using the spectral features, namely, Mel-frequency
discrete wavelet coefficients MFDWC) [2], was to be able to dis-
criminate between acoustic scenes by the spectral characteristics of
the specific audio events that characterize them. We use constant-Q
cepstral coefficients (CQCC) [3] in an attempt to mimic the human
hearing system better than mel-scaled features. A set of short-term
(ST) time and frequency features are also used to complement the
two features. Our proposed system employs a fusion-based frame-
work. The classification results from the aforementioned features
extracted from monophonic audio streams are score-fused to get the
final classification.

The rest of this report is organized as follows: In Section 2, we
give the description of the elements that are core to the proposed
system. Next, in Section 3 we elaborate on the formation of the
system and the experimental configuration. In Section 4, we present

the results. It is followed by the conclusion of the work in Section
5.

2. BASIC SYSTEM CONFIGURATION

2.1. Features
The proposed systems use the following as features.

o Mel-frequency discrete wavelet coefficients (MFDWC) [2]: In
all fields of speech processing, mel-frequency cepstral coeffi-
cients (MFCC) are the most exploited features. One of the im-
portant steps in MFCC extraction is discrete cosine transform
(DCT). However, the basis vectors of DCT have approximately
the same resolution in time and frequency. Also, because they
span the whole frequency range, corruption of a band due to
noise affects all the coefficients. These shortcomings can be
overcome by using discrete wavelet transform (DWT) instead
because it has better time and frequency localization capacity.
Unlike Fourier based transforms, wavelet transform uses short
basis functions for high-frequency content and long basis func-
tions for low-frequency content of a signal. This makes it suit-
able for working with audio signals captured from acoustically
different surroundings that cover the entire audio frequency
range of 20Hz to 20 kHz. DWT applied to mel-filterbank log-
energies results in MFDW coefficients. Wavelet based features
are especially efficient in characterizing the impulsive parts of
the audio [4]. The feature extraction scheme is same as that of
MECC, except that the DWT is applied in place of the DCT.

o Constant-Q cepstral coefficients (CQCC) [3]: Audio percep-
tion in humans exhibits higher frequency resolution at lower
frequencies and a higher temporal resolution at higher fre-
quencies. This is equivalent to having a set of filters with
constant Q-factor across the entire spectrum. Geometrically
spaced frequency bins can be employed to achieve this objec-
tive. Constant-Q transform (CQT) implements the same and
is commonly used in music signal processing. It is similar
as wavelet transform but with a high Q-factor.The coupling of
CQT with traditional cepstral analysis resulted in constant-Q
cepstral coefficients (CQCC) [3].

o Short-term (ST) time and frequency features [5]: Short-term
features, such as zero crossing rate, energy, entropy of energy,
spectral centroid, spectral spread, spectral flux, spectral roll-off
point, spectral entropy, harmonic ratio, and fundamental fre-
quency, are found to possess the ability to discriminate between
various sounds [5]. Since acoustic scenes are a collection of
multiple environmental sounds, these features are expected to
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add to the information captured by cepstral features.

2.2. Classifier

In our system, we have used SVM with RBF (radial basis function)
kernel. Since SVM is a binary classifier, in order to determine a
decision criterion for multi-class ASC, we have combined multiple
SVMs following one-versus-one approach. Thus, for N classes,
N(N — 1)/2 classifiers are made, where each one trains on data
from two classes. The decision criterion estimates the class of an
unknown sample by evaluating the distance between the feature-
point and the separating hyperplanes learned by the SVMs. Each
binary classification is deemed to be a voting where votes are cast
for all data points. The class with the maximum votes acquires a
data point in the end.

2.3. Fusion strategy

SVM requires that each data sample is represented as a vector. For
this purpose mean and standard deviation are considered as a good
representation of the whole data [6]. The audio of DCASE chal-
lenge was recorded in binaural format, i.e., the two channels carried
different values. One possible way of working with such data is to
first convert the audio to monophonic by averaging the two channels
[7]. In score-level fusion the classifier output is combined such that
appropriate weights are given to the decisions of different partici-
pating systems. In this case, the system performing better should
be given more weightage in the decision making. Weights can be
fixed empirically, but the process is cumbersome and also not ro-
bust. We have used the weight optimization algorithm followed by
FoCal Multi-class toolkit [8], which uses the classification perfor-
mance of each classifier and applies logistic regression to derive
appropriate weights for score fusion.

3. PROPOSED SYSTEM

The block diagram for the proposed system is shown in Fig. 1 which
is similar to first system in [9]. In this system, the required fea-
tures are extracted from windowed frames of pre-emphasized audio
and then across-frames mean and standard deviation are calculated.
These vectors are used to train the SVM corresponding to each fea-
ture. The scores from the feature-wise classifiers are fused to gen-
erate channel-wise scores, which in turn are fused to generate the
final scores. The weights for fusion were obtained from test por-
tion of the dataset and were saved for later use in system testing.
The data for testing comes from the evaluation dataset and follows
a path similar to that of development. However, in this case whole
development data is used for training the SVMs.

3.1. Experimental Framework

We have used the the development dataset of TUT Acoustic Scenes
2016 (TUTAS16D) [10], TUT Acoustic Scenes 2017 (TUTAS17D)
[11] and TUT Urban Acoustic Scenes 2018 (basic (TUTUAS18D)
for sub-task A and mobile (TUTUASM16D) for sub-task B [12] in
our experiments. The first two datasets differ from each other in the
length of the audio streams (30 sec for first and 10 sec for second)
and size of the datasets (the second one is larger). The third and
the fourth datasets, which are the development data for the present
challenge, differ from the first two in the classes. From all the data
samples, MFDWC were extracted by applying Hamming window
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Figure 1: Block diagram of fusion-based proposed system

on 40 ms frame having 50% overlap. Pre-emphasis to the audio sig-
nals was done by a factor of 0.97. Filterbank of 80 filters was used
for MFDWC (triangular filters). Delta (A) features, evaluated with
a 3-frame window, were appended only for MFDWC. The param-
eters for CQCC features given in [3] were used here. ST features
extraction was same as that in [7]. Frame-wise mean and standard
deviation of the features were given as input to SVM classifier with
RBF kernel. According to the previous DCASE challenges’ ASC
task setup, development data is partitioned into k folds, where k=4
for both 2016 and 2017. Fold-wise mean classification accuracy
was used as the performance metric. However, in the present chal-
lenge, only one train and test partition was given i.e. k=1, and there-
fore the results are evaluated for the given test subset.

4. RESULTS

The results of the three features on the three datasets are shown
in Table 1. It can be seen here that although the features perform
differently, they all surpass the chance-level accuracy of the three
datasets (6% for first two datasets and 10% for the third dataset).
Nevertheless, the three features carry complementary information
and that is why the fusion resulted in improvement.

In the present challenge, class-wise mean accuracy is used as
the metric. The mean accuracy of all classes reported for the
logMBE-CNN baseline system for sub-task A is 59.7% [13]. Thus,
by obtaining a mean class-wise accuracy of 69.81%, our proposed
system has relatively outperformed the deep-learning based base-
line by 17% with the development dataset of sub-task A. Class-wise
performance comparison of the two systems for this sub-task is de-
picted in Fig. 2. The baseline system’s worst performance is on the
‘public_square’ class, while most misclassifications have occurred
with ‘shopping_mall’ being categorized as ‘airport’. The darker
shades in the diagonal of the proposed system’s confusion matrix
exhibit its superiority in all scene classes. It has shown its worst
performance in ‘street_pedestrian’ with many samples of this class
being wrongly put into ‘public_square’ category. The classes ‘park’
and ‘street_traffic’ are well-classified by both systems.

The performance of the proposed system for the three devices
of sub-task B is shown in Table 2 alongwith the reported results of
the baseline system. It can be seen that the proposed fusion-based
system performed better than the baseline for all three devices. Ac-
cording to the rules of the challenge for this sub-task, the ranking of
the systems will be done by the average performance with devices
B and C only. The reported baseline accuracy in this case is 45.6%.
Our proposed framework achieved 57.78%, which is 26% relatively
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Table 1: Proposed system performance on three datasets in terms of mean accuracy (%).
Feature TUTAS16D TUTAS17D TUTUAS1ISD TUTUASMI1SD
ST-SVM 42.56£7.11  49.40+2.37 45.95 42.15
CQCC-SVYM 73.94+7.24  76.01£1.75 63.07 60.53
MFDWC-SVM  79.15+£0.42  82.27+£1.70 65.57 63.24
Proposed 84.98+3.23  84.4242.48 70.02 66.68
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Figure 2: Confusion matrix of results with (a) logMBE-CNN based baseline system and (b) score-fusion based proposed system with TUT
Urban Acoustic Scenes 2018 development dataset, sub-task A.

better.

Table 2: Proposed system performance for the three recording de-

vices in sub-task B in terms of mean accuracy (%).

System Device A Device B Device C
ST-SVM 43.76 21.67 40.00
CQCC-SsVM 62.23 48.33 50.56
MFDWC-SVM 63.94 59.44 57.22
Proposed 68.51 58.89 56.67
Baseline 58.90 45.10 46.20

5. CONCLUSION

hand, sub-task B addresses the situation in which an application
will be tested with a few different types of devices, possibly not the

same as the ones used to record the development data. Our system
applied fusion of well-known audio processing features to produce

classification better than the baseline system on both the sub-tasks.

(1]

(2]

In this technical report, we have described a system for acoustic
scene classification task (Task 1, Sub-task A and Sub-task B) of
DCASE challenge 2018. The first sub-task is concerned with the
basic problem of ASC, in which all available data (development [3]
and evaluation) are recorded with the same device. On the other
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