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ABSTRACT 

In this technique report, we provide self-attention mechanism for 

the Task1 and Task 4 of Detection and Classification of Acoustic 

Scenes and Events 2018 (DCASE2017) challenge. We take con-

volutional neural network (CNN) and gated recurrent unit (GRU) 

based recurrent neural network (RNN) as our basic systems in 

Task 1 and Task 4.  In this convolutional recurrent neural network 

(CRNN), gated linear units (GLUs) is used for non-linearity 

which implement a gating mechanism over the output of the net-

work for selecting informative local features. Self-attention mech-

anism called intra-attention is used for modeling relationship be-

tween different positions of a single sequence over the output of 

the CRNN. Attention-based pooling scheme is used for localizing 

the specific events in Task 4 and for obtaining the final labels in 

Task 1. In a summary, we get 70.81% accuracy subtask 1 of Task  

1. In the subtask 2 of Task 1, we  get 70.1% accuracy for device 

a, 59.4% accuracy for device b, and 55.6 accuracy for device c. 

For Task 1, we get 26.98% F1 value for sound event detection in 

old test data of developmemt data.  

 

Index Terms— GCNN, GLU, attention mechanism 

1. INTRODUCTION 

Sounds contain a variety of information that humans use to under- 

stand the surroundings, without visual information, humans can 

easily recognize the scenes and events from the surrounding 

sounds because our auditory system is well trained. 

AED is a closely related research area to ASC. An acoustic 

scene may be thought as a collection of sound events on top of 

some ambient noise. For instance, a “park” scene may be identified 

from bird chirping sound, a “restaurant” scene may be identified 

from cutlery, dishes and people’s conversations sounds and a ‘bus’ 

scene may be identified from engine, braking and door opening 

sounds. It is difficult to create an automated system that recognize 

acoustic scenes and events, because it needs high level of infor-

mation. 

There are many applications of ASC and AED including mul-

timedia indexing [1], intelligent monitoring system in living envi-

ronment [2], scene classification and recognition [3], automatic 

audio tagging [4], audio segmentation [5], and health care [6], etc.  

Some approaches to ASC [7] exploit binaural representation 

techniques to increase the scene classification accuracy. Sound 

event detection performance can be improved using ASC [8]. ASC 

and sound event detection are closely related, and the boundary 

between them is often blurred  [9].  

For weekly label sound event detection, some methods based 

on deep neural network have been introduced in recent years. Ku-

mar  et.al proposed a two frameworks based on multiple instance 

learning [10], one based on support vector machines, and the other 

on neural networks. Kong et.al [11] proposed a joint detection and 

classification (JDC) framework trained only on weakly labelled 

audio data. T-F segmentation framework is proposed to estimate 

the presence probability of each sound event and predict onset and 

offset times is from the T-F segmentation masks for SED [12] .  

Here we limit the scope to identification of environmental 

sounds and detection of weekly label sound event. 

2. PROPOSED ARCHITECTURE 

We present a bunch of methods to solve Task 1 and Task 4, in-

cluding mixup data augumention, gated activation function, self-

attention mechanism and incremental learning scheme. 

 

2.1 Features 

 

Mel-frequency Cepstral Coefficients (MFCCs) have been used in-

clusivly in acoustic sound classification [13][14]. In recent works 

of sound event detection [15] [16],  the use of MFCCs  is shown 

that because of being sensitive to background noise it is not the 

best choice.  

In speech recognition,  Mel-filter bank (MBK) features have al-

ready been demonstrated to be better than MFCCs in the deep neu-

ral network [17]. In this report we take log-Mel filter banks as fea-

tures.  

In Task 1, subtask 1 uses 48KHz sampling rate, and subtask 

2 uses 44.1 kHz sampling rate of, so for this task, we uniformly 

use 44.1 kHz sampling rate. Each 10-second chunk has 320 frames 

by 128 mel frequency channels. 

In Task 4, the sampling rate of the audio segment is different, 

we uniformly use 16 kHz sampling rate. Each 10-second chunk 

has 240 frames by 64 mel frequency channels. 

 

2.2 Data augumention 

 

This report uses mixup as a method of data enhancement [18]. This 

method can improve the generalization ability of the model and 

construct a virtual training sample. The mathematical expression 

for the mixup is as follows: 

x̂ = λ𝑥𝑖 + (1 − λ)𝑥𝑗  

ŷ = λ𝑦𝑖 + (1 − λ)𝑦𝑗 
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Where (𝑥𝑖, 𝑦𝑖) and (𝑥𝑗  , 𝑦𝑗) are two samples randomly extracted 

from the training data, and λ ∈ [0,1],  λ ∼ Beta(α, α), α ∈ (0, ∞). 

The mixup extends the characteristics of the training set and the 

label distribution by linear interpolation of the feature vectors and 

linear interpolation of the corresponding labels. The super-param-

eter α of the mixup controls the interpolation strength of the fea-

tures and labels 

 

2.3 Gated linear units 

 

In this report, our baseline system references to previous work [19]. 

In this baseline system, we use a learnable gated activation func-

tion called GLU [20] rather than sigmoid or ReLU to introduce the 

non-linear characteristics in CRNN network. GLUs are defined as: 

 

Y = (W ∗ X + B) ⊙ σ(V ∗ X + C) 
 

Where σ is the sigmoid nonlinear activation function, ⊙ de-

notes the corresponding element point multiplication, and ∗ de-

notes the convolution operator. W and V represent the filters in the 

convolutional layer. In the input layer, X represents the time fre-

quency of the input in the first layer, and in the middle layer, X 

represents the input of the intermediate layer. 

 

2.3 Self-attention structure 

 

In this report, we introduce self-attention mechanism proposed in 

previous work [21]. In previous work, attention mechanism is de-

scribed as a kind of mapping from a Q and a set of K-V pairs to an 

output, where the Q, K, V, and output are all vectors. The output 

of attention is a weighted sum of the V, where the weight is as-

signed to each value which is computed by dot-product of the Q 

with the corresponding K. When K, V and Q come from the same 

source, this kind of attention is call self-attention mechanism. In 

the self-attention mechanism, vector of each position could pro-

cess all positions in the output of previous layer. In this report, 

CRNN structure is followed by self-attention mechanism. Self-at-

tention structure is shown as Fig 1. 
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Fig 1: The diagram of the proposed self-attention 

 

2.4 Overall neural network structure 

 

Our system is based on the previous work [19], and the global 

weighted pooling (GWP) is used in the last layer rather than global 

maximum pool and global average pool. The block diagram of the 

system structure used in this paper is shown in Fig 2. 
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Fig 2: The diagram of the proposed unified model in Task 1 and 

Task 4 

 

2.4 Incremental learning scheme 

 

Because the Task 4 has unlabeled dada, this algorithm is only used 

in Task 4. At the beginning, the dataset L is a small amount of 

labeled data; we train a model ℳ0 with a small amount of labeled 

date and run it on U to select b number of samples for labeling 

according to pre-defined thresholds α . The newly labeled samples 

will be incorporated into L to continuously fine-tune the pre-

trained model incrementally until the number of samples in U is 

less than pre-defined N. Several researchers have demonstrated 

that fine-tuning offers better performance and is more robust than 

training from scratch. The incremental algorithm is illustrated in 

Alg. 1 

 

Algorithm 1: Incremental  fine-learning method 

Input:   

U = {𝐶𝑖}, i ∈ [1, n], {U contains n candidates，without label} 

ℳ0: pre-trained CNN 

b: batch size 

α: pre-defined thresholds to pick samples worthy of labeling 

N: pre-defined number to stop fine tuning when the number of 

samples without labels is less than N 

Output： 

ℒ: Labeled samples 

ℳ𝑡: fine-tuned model at Iteration t 

Functions: 

p ← P(C, ℳ){outputs of ℳ given ∀𝑥∈ 𝐶} 

ℳ𝑡 ← F(ℒ, ℳ𝑡−1){fine-tune ℳ𝑡−1 with ℒ} 

Initialize： 

ℒ ←Labeled training set, t ←1 
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1 repeat 

2    for  each 𝐶𝑖 ∈ U do 

3        𝑝𝑖 ← P(𝐶𝑖 , ℳ𝑡−1) 

4    End 

5    according to the category, put the samples which the pre-

dicted value 𝑝𝑖 is larger than α into the new set Q and dedupli-

cate the set Q 

6    ℒ ← ℒ⋃𝒬；U ← U ∖ 𝒬 

7    ℳ𝑡 ← F(ℒ, ℳ𝑡−1), t ← t + 1 

8    until the number of samples in U is less than N 

 

3. EXPERIMENT AND RESULTS 

The parameters of the network were initialized by random 

values sampled from zero-mean normal distribution. These sys-

tems of Task1 and Task4 are trained by using back-propagation 

with binary cross-entropy loss function, correct labels and esti-

mated labels. A stochastic gradient descent algorithm [22] is per-

formed using Adam algorithm optimization [23] in mini-batches 

to improve learning convergence. Dropout technique [24] is used 

to prevent overfitting problem.  

3.1. Task 1: Acoustic Scene Classification 

TUT Acoustic scenes 2018 dataset is used in this task. This task 

contains three subtasks, we solve subtask1 and subtask2. The da-

taset consists of recordings from various acoustic scenes, all hav-

ing distinct recording locations. Each recording contains 10-sec-

ond segments. The development data consists of recordings from 

all six cities. 

For subtask1, of the total 8640 segments, 6122 segments are 

used for training, 1000 segments are used for validation and 2518 

segments used for testing.   

We compare the results of baseline system structure (without 

self-attention ) with the proposed structure with self-attention. The 

results are shown in Table 1. 

 

Table 1: Accuracy of  subtask 1 in Task 1 

Scene label Baseline  Self-attention 

airport 68.30 75.47   

shopping mall 59.86    58.06 

metro station 80.69   76.06 

street pedestrian 67.21 59.51 

public square 46.30   52.31   

street traffic 87.40   86.59    

tram 81.61 74.33   

bus 62.81    69.01   

metro 69.35     72.03   

park 83.06 84.71    

Average 70.66 70.81    

 

Confusion matrix of the result of subtask 1 with self-attention is 

shown in Fig 3. 

 

Fig 3: Confusion matrix of the result of subtask 1 with self-atten-

tion 

 
For subtask 2, of the total 10080 segments, 6202 segments 

are used for training, 1000 segments are used for validation and 

2878 segments are used for testing.   

We compare the results of baseline system structure (without 

self-attention) with the proposed structure with self-attention. The 

overall average results for three devices are shown in Table 2. 

 

Table 1: Overall accuracy of  subtask 2 in Task 1 

Device Baseline (%) Self-attention (%) 

a 61.9 70.1 

b 49.4 59.4 

c 48.9 55.6 

Average b/c 49.2 57.5 

 

The confusion matrix of three devices of subtask 2 are shown 

in Figure 4 .  

 

Fig 4: The confusion matrix of three devices of subtask 2 with 

self-attention 
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3.1. Task 4: Large-scale weakly labeled semi-supervised sound 

event detection in domestic environment 

The data from You tube video which excerpts from domestic con-

text are used in Task 4. 

The objective of this task is to provide not only the event class 

but also the event time boundaries given that multiple events can 

be present in a 10-second audio chunk. There are 10 kinds of 

events occurring in audio segments including Speech, Dog, Cat, 

Alarm/bell/ringing, Dishes, Frying, Blender, Running water, Vac-

uum cleaner and Electric shaver/toothbrush.  

This task provides 3 different splits of training data and one 

test dataset with strong label. Training dataset contains three parts: 

labeled training set, unlabeled in domain training set and unlabeled 

out of domain training set. Labeled training set contains 1578 

clips (2244 class occurrences) with weak annotations, while unla-

beled in domain training set with 14412 clips and unlabeled out of 

domain training set with 39999 clips have no labels. Because the 

distribution of Audio labels on unlabeled out of domain training 

set might not be similar with labeled training set, unlabeled in do-

main training set, we will discard unlabeled out of domain training 

set in the experiment. 

We compare the results of baseline system structure with the 

proposed structure based on self-attention. The results are shown 

in Table 3. 

Table 3: F1, Precision and Recall comparisons for the on the 

development datasets 

 

Model F1 

(%) 

P (%) R (%) 

Baseline 23.67 23.00 24.39 

Baseline(Incremental  ) 26.98 28.79 25.39 

Self-attention 8.01 10.12 6.62 

 

Table 4: Class-wise performance comparisons of baseline 

and self-attention 

 

Event label Baseline Self-attention 

 F(%) P(%) R(%) F(%) P(%) R(%) 

Speech 47.9 55.9 41.9 0.0 0.0 0.0 

Dog 1.8 2.0 1.6 2.2 3.8 1.6 

Cat 2.8 2.3 3.7 3.1 4.4 2.4 

Alarm bell-

ing 
31.5 40.3 25.9 3.8 6.2 2.7 

Dishes 12.0 18.0 9.0 1.2 2.0 0.8 

Frying 15.0 9.6 33.3 30.8 24.4 41.7 

Blender 18.0 16.3 20.0 16.1 14.9 17.5 

Running-

water 
28.8 21.0 46.1 8.0 7.1 9.2 

Vacuum 

clean 
12.7 9.5 19.4 42.9 37.5 50.0 

Electric 

shaver 
30.7 33.3 32.1 31.3 27.8 35.7 

 

4. CONCLUSIONS 

This technique report briefly describes the overall framework 

and some methods for the Task 1 and Task 4 of DCASE2018 chal-

lenge. We found the self-attention mechanism can improve the 

performance of the system effectively in Task 1. In Task 4, the 

incremental learning algorithm can effectively improve the perfor-

mance of the system. Although the self-attention mechanism does 

not improve the overall performance of the system, it improves the 

performance of some sound events, for example, “frying”, Vac-

uum clean and “Electric shaver”, which is long duration. 
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