Detection and Classification of Acoustic Scenes and Events 2018

Challenge

COMBINING HIGH-LEVEL FEATURES OF RAW AUDIO AND SPECTROGRAMS FOR
AUDIO TAGGING

Technical Report

Marcel Lederle*

University of Konstanz
78457 Konstanz, Germany
marcel.lederle @uni.kn

ABSTRACT

We introduce a method for general-purpose audio tagging that
combines high-level features computed from the spectrogram and
raw audio data. We use convolutional neural networks with one-
dimensional and two-dimensional convolutions to extract these use-
ful high-level features and combine them with a densely connected
neural network to make predictions. Our method performs in the
top two percent of on the Freesound General-Purpose Audio Tag-
ging Challenge.

Index Terms— audio-tagging, CNN, raw-audio, mel-
spectrogram

1. INTRODUCTION

In this report, we focus on building an audio tagging system that can
assign one of 41 heterogeneous classes to an audio clip as of task
2 of the DCASE 2018 Challenge [1]. The system has to decide be-
tween classes drawn from the AudioSet Ontology [2] like “Acoustic
guitar”, “Bark”, “Bus” and “Telephone”.

For training and evaluation only the provided challenge dataset
is used which contains diverse user-generated audio clips from
Freesound (https:/freesound.org) which feature unreliable labels.
The challenge organizers labeled a subset of the audio clips man-
ually while a larger set was labeled automatically. Therefore, the
reliability of the labels varies. Additional information about the la-
beling process can be found in the publication describing the chal-
lenge task [1].

2. METHOD

For the classification, we train two convolutional neural networks
on the raw audio input and the mel-scaled spectrogram and combine
the learned features with a densely connected neural network. In
the following we describe each model and the performed stacking
separately.

2.1. CNN on raw audio (CNN_AUDIO)

For the CNN_AUDIO model, we use an architecture similar to
common architectures for image classification like VGG16 (Si-
monyan et al. [3]) or AlexNet (Krizhevsky et al. [4]), but with one-

*Shared first author
T Shared first author

Benjamin Wilhelm!

University of Konstanz
78457 Konstanz, Germany
benjamin.wilhelm @uni.kn

dimensional convolutions and max pooling. The model takes a nor-
malized array of audio samples with a sampling rate of 44.1 kHz as
input.

The exact architecture is described in figure 1.

2.2. CNN on mel-scaled spectrogram (CNN_SPEC)

The CNN_SPEC model is a two-dimensional convolutional neural
network on the mel-scaled spectrogram of the audio. The mel-
scaled spectrogram was extracted using librosa (McFee et al. [5])
with a hop-length of 256.

The architecture is again similar to common image classifica-
tion architectures and is described in detail in figure 2.

2.3. Stacking (CNN_COMB)

For the combined model we removed the dense layers of the
CNN_AUDIO model and the CNN_SPEC model and concatenated
the output features of the previous layers of both models. The con-
catenated features were then connected to five dense layers includ-
ing the output layer with 41 classes. The hidden dense layers have
512, 256, 256 and 128 neurons respectively. The full model is illus-
trated in figure 3.

2.4. Data augmentation

To prevent our model from overfitting we use extensive data aug-
mentation like random cropping and padding, time shifting and
combining audio of the same or different classes. Each of these
techniques is applied to the raw audio and the mel-scaled spectro-
gram.

2.4.1. Random Cropping

For audio samples that are longer than the model input, we use a
crop of the size of the model input which is taken from a random
position of the audio sample.

2.4.2. Random Padding

For audio files that are shorter than the model input, we pad it with
zeros. The location of the original audio sample in the padded input
is uniformly random. If an audio sample fits multiple times (e.g. n
times) into the model input it appears k € {1,...,n} times with a
probability of 1/n.

Detection and Classification of Acoustic Scenes and Events 2018 Challenge
1 sec 2 sec 3 sec 1 sec 2 sec 3 sec
| input | | input | | input | | input | | input | | input |
(44100, 1) (88200, 1) (132300, 1) (128, 170, 1) (128,300, 1) (128, 400, 1)
| convld, 11,32 | | convld, 11, 32 | | convld, 11, 32 | | conv2d, 4x4, 64 | | conv2d, 4x4, 64 | | conv2d, 4x4, 64 |
(44100, 32) (88200, 32) (132300, 32) (128, 170, 64) (128,300, 64) (128, 400, 64)
| comvid, 11,32 | | comvid, 11,32 | | convid 11,32 | [convad, 4x4, 64 | | convad,4xd,64 | | convad 4x4, 64 |

(44100, 32) (88200, 32) (132300, 32)

max-poolld, 16 |

| max-poolld, 8 | | max-poolld, 16 | |

(128, 300, 64) (128, 400, 64)
max-pool2d, 2x2 | | max-pool2d, 2x2 |

(128, 170, 64) |

(5512, 32) (5512, 32) (8268, 32) (64, 150, 64) (64,200, 64)

| com1d 9,64 | | convid964 | | convid9.64 | [convad,4x4, 64 | | convad,4x4,64 | | convad 4x4, 64 |
(5512, 64) (5512, 64) (8268, 64) (128, 170, 64) (64, 150, 64) (64,200, 64)

| conlel, 9, 64 | | conlel, 9, 64 | | conVl(.i, 9, 64 | | max-pool2d, 2x2 | | max-pool2d, 2x2 | | max-pool2d, 2x2 |
(5512, 64) (5512, 64) (8268, 64) (64, 85, 64) (32,75, 64) (32, 100, 64)

| max-poolld, 16 | | max-poolld, 16 | | max-poolld, 16 | | conv2d, 3x3, 128 | | conv2d, 3x3, 128 | | conv2d, 3x3, 128 |

(344, 64) (344, 64) (516, 64) (64, 85, 128) (32,75, 128) (32,100, 128)
| cold7,128 | | cold7,128 | | convld,7,128 | [maxpool2d,2x4 | | max-pool2d,2x4 | [max-pool2d,2x4 |
(344, 128) (344, 128) (516, 128) (32,21, 128) (16, 18, 128) (16,25, 128)
| convid, 7,128 | | convid, 7,128 | | convid,7,128 | | conv2d,3x3,128 | | conv2d,3x3,128 | | conv2d,3x3,128 |
(344, 128) (344, 128) (516, 128) (32,21, 128) (16, 18, 128) (16,25, 128)
| max-poolld, 16 | | max-poolld, 16 | | max-poolld, 16 | | max-pool2d, 2x2 | | max-pool2d, 2x2 | | max-pool2d, 2x2 |
(21,128) (21,128) (32,128) (16, 10, 128) (8,9, 128) (8,12, 128)
| comld 11,32 | | comld11,32 | | cowld11,32 | | com24,3x3,256 | | conv2d,3x3,256 | | comv2d,3x3,256 |
(1,256) (1,256) (32,256) (16, 10, 256) (8,9,256) (8,12, 256)
| convld., 11, 32 | | convld., 11, 32 | | convld., 11, 32 | | max-pool2d, 2x2 | | max-pool2d, 2x2 | | max-pool2d, 2x2 |
(1,256) (1,256) (32,256) (8,5, 256) (4,4, 256) (4,6, 256)
[maxpoolld, 16 | | max-poolld, 16 | | maxpoolld, 16 | [convad,3x3,256 | | comv2d,3x3,256 | | comv2d,3x3,256 |
(1,356) (1,356) (2, 356) (8, 5,256) (4,4,256) (4, 6,256)
| dense, 512 | | dense, 512 | | dense, 512 | | max-pool2d, 2x2 | | max-pool2d, 2x2 | | max-pool2d, 2x2 |
(512) (12) (12) (4,2,256) (2,2,256) (2,3,256)
| softmax, 41 | | softmax, 41 | | softmax, 41 | | dense, 256 | | dense, 256 | | dense, 256 |
(256) (256) (256)
| softmax, 41 | | softmax, 41 | | softmax, 41 |

Figure 1: The architecture of the CNN_AUDIO model. After each
convolution and the dense layer a ReLU activation function is ap-
plied and after each max-pooling and dense layer batch normaliza-
tion is performed.

2.4.3. Time Shifting

A uniformly random time shift is applied to the audio sample.

2.4.4. Same-Class Augmentation

For same class augmentation, multiple audio samples with the same
class are summed up with random weights for each sample.

2.4.5. Different-Class Augmentation

For different class augmentation, multiple audio samples with dif-
ferent classes are summed up with random weights for each sample.
The model is then required to predict the weights of each class in-
cluded.

2.5. Implementation Details

We implemented the described method using Keras (Chollet et
al. [6]) in Python.

To prevent overfitting and monitor the model performance dur-
ing training we always excluded a part of the training data as vali-
dation data. In order to still make use of all training data, we trained
five models on different stratified folds of the training data such that

Figure 2: The architecture of the CNN_SPEC model. After each
convolution and the dense layer a ReLU activation function is ap-
plied and after each max-pooling, dense or convolution without a
following max-pooling layer batch normalization is performed.

each training example is used once for validation and four times for
training. For the final prediction, we use all five models and predict
the three classes which yield the highest geometric mean over the
models.

To fit the models we train the CNN_AUDIO and CNN_SPEC
models from scratch. After that, the weights of these models are
used for the feature computing parts of the CNN_COMB model and
only the weights of the following dense layers are trained.

While the spectrogram is computed in advance the data aug-
mentation described above is performant enough to be computed
on the fly during the training. This saves disk-space and ensures a
large amount of diverse training data.

When predicting on the test data we have to take into account
that some audio tracks are longer than the desired model input and
some tracks are shorter. For the longer tracks, it is not sufficient to
only predict on one crop of the data because the main class might
not be present in the selected crop. Therefore, we run the inference
step on many crops of the audio where the step size is 5120 frames
which is about 0.12 seconds and combine the predictions with the
geometric mean. For shorter audio tracks the model might be able
to recognize the class better in certain parts of the input. Therefore,

Detection and Classification of Acoustic Scenes and Events 2018

Challenge

it

7 i |

max-pool)

conv

\

\ |:| 41 classes

dense
dense

4

max-pool /

Figure 3: The architecture of the whole model.

we generate multiple inputs by padding the audio file with zeros
such that the real audio appears in different positions of the input.
Again we use a step size of 5120 frames.

3. EVALUATION

We trained all the described models for inputs of one, two and three
seconds as described in section 2.5 and uploaded the predictions of
them to Kaggle where they were scored with mean Average Pre-
cision at three on about 300 samples. The scores can be found in
table 1.

We observe that the combined model performs significantly bet-
ter than both single models. This suggests that the models make
different errors and some relevant high-level features are easier to
extract from the raw audio while others are easier to extract from
the mel-scaled spectrogram.

The two-second combined model yields the best public leader-
board score and ranks in the top 2 percent of all participants.

4. JUDGES AWARD

To improve the computational efficiency of our model we can just
use one of the five two-second combined models. Additionally, we
can increase the step size of the crops to 51200 frames which are
about 1.2 seconds.

With this step size and only using one model running inference
on all 9397 test audio clips with a total length of almost 15 hours
took only about 11 minutes on a Dell notebook with a Nvidia GTX
1050 GPU. Therefore, the prediction of one minute worth of audio
clips only takes about 0.74 seconds. The model has a total number
of 3,136,649 parameters.

While the computational time is greatly improved the model is
still competitive on the public leaderboard with a mAP@3 score of
0.956.

The corresponding submission CSV file is called
Wilhelm UKON_task2_2.output.csv and the Kaggle
team name is “Deep Lake”.

5. CONCLUSION

In this report, we introduced a powerful and easy method for audio-
tagging that adds the usage of the raw audio wave to classical ap-
proaches which only make use of the spectrogram and showed that
this improves the accuracy of the model significantly. We demon-
strate the possibilities of our model by submitting to the Freesound
General-Purpose Audio Tagging Challenge and scoring in the top
two percent of all participants.

6. ACKNOWLEDGMENT

We thank Christian Borgelt and Christoph Doell for their lecture
which challenged us to take part in this competition.

7. REFERENCES

[1] E. Fonseca, M. Plakal, F. Font, D. P. Ellis, X. Favory, J. Pons,
and X. Serra, “General-purpose tagging of freesound audio
with audioset labels: Task description, dataset, and baseline,”
arXiv preprint arXiv:1807.09902, 2018.

[2] J. F. Gemmeke, D. P. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
set: An ontology and human-labeled dataset for audio events,”
in Acoustics, Speech and Signal Processing (ICASSP), 2017
IEEE International Conference on. 1EEE, 2017, pp. 776-780.

[3] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet clas-
sification with deep convolutional neural networks,” in Ad-
vances in neural information processing systems, 2012, pp.
1097-1105.

[5] B. McFee, M. McVicar, S. Balke, C. Thomé, C. Raffel,
O. Nieto, E. Battenberg, D. Ellis, R. Yamamoto, J. Moore,
R. Bittner, K. Choi, F.-R. Stoter, S. Kumar, S. Waloschek, Seth,
R. Naktinis, D. Repetto, C. F. Hawthorne, C. Carr, hojinlee,

Detection and Classification of Acoustic Scenes and Events 2018

Challenge

Model Crop length Validation score (nAP@3) Public leaderboard score (mAP@3)
min max avg
Isec 0.879 0.901 0.887 0.920
CNN_AUDIO 2sec 0.876 0.905 0.890 0.921
3sec 0.895 0.894 0.884 0.935
Isec 0.928 0.947 0.933 0.930
CNN_SPEC 2sec 0.932 0.944 0.932 0.950
3sec 0.928 0.945 0.936 0.935
Isec 0.943 0.963 0.953 0.955
CNN_COMB 2sec 0.949 0.958 0.954 0.966
3sec 0.945 0.966 0.954 0.956

Table 1: Evaluation Results. For the validation score, the prediction was done by all five models on different subsets of the training data where
the respective model wasn’t trained on. For the public leaderboard score, the classes resulting from the geometric mean of all five models
have been uploaded to Kaggle where they were evaluated on around 300 test samples.

W. Pimenta, P. Viktorin, P. Brossier, J. F. Santos, JackieWu,
Erik, and A. Holovaty, “librosa/librosa: 0.6.0,” Feb. 2018.
[Online]. Available: https://doi.org/10.5281/zenodo.1174893

[6] F. Chollet et al., “Keras,” https://keras.io, 2015.

