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ABSTRACT 

The performance of an Acoustic Scene Classification (ASC) 

system is highly depending on the latent temporal dynamics of 

the audio signal. In this paper, we proposed a multiple layers 

temporal pooling method using CNN feature sequence as input, 

which can effectively capture the temporal dynamics for an 

entire audio signal with arbitrary duration by building direct 

connections between the sequence and its time indexes. We 

applied our novel framework on DCASE 2018 task 1, ASC. For 

evaluation, we trained a Support Vector Machine (SVM) with 

the proposed Multi-Layered Temporal Pooling (MLTP) learned 

features. Experimental results on the development dataset, us-

age of the MLTP features significantly improved the ASC per-

formance. The best performance with 75.28% accuracy was 

achieved by using the optimal setting found in our experiments. 

Index Terms— acoustic scene classification, temporal 

pooling, convolutional neural networks, support vector machine 

1. INTRODUCTION 

Environmental sound classification is one of the most crucial 

components in the computational auditory analysis and the es-

sential preprocessing stage for the robust speech recognition 

system. With the organizations of the DCASE workshop [1, 2] 

in 2016 and 2017, more attentions have been drawn to the 

Acoustic Scene Classification (ASC) task. Thanks to all these 

submissions in last two years, these researchers have provided 

many excellent ideas and useful experiences for the new 

DCASE 2018 [3] challengers including us. 

Roughly scanning the previous submissions in last two 

years, it is easy to find that, deep learned solutions were very 

popular with the researchers. Such as CNN [4, 5, 6, 7], RNN [8], 

DNN [9], GAN [10], and all of them had achieved good results 

in the ASC tasks of the challenge. In the DCASE 2017 leader-

board, the rank first was won by the GAN system proposed by 

[10], the second and the third place belonged to the CNN sys-

tems proposed by [5] and [4] respectively. Obviously, CNN is a 

powerful model for ASC task. We also use a CNN model as one 

of the crucial components for our proposed framework. 

As the audio signal is a continuous sequence restrained by 

its chronological order, and its high-level semantics contain in 

the temporal structure of the sequence. Hence, it is reasonable 

to improve the performance of AER by using the temporal in-

formation. In DCASE 2017, A. Schindler et al. [7] proposed a 

CNN architecture which harnesses information from increasing 

temporal resolutions of Mel-Spectrogram segments. In contrast 

with the work of [7], we focus on how to capture the latent tem-

poral information of the entire audio sample. To achieve this 

goal, we proposed a multiple layer temporal feature learning 

framework using CNN features as input, we call it Multi-layered 

Temporal Pooling (MLTP). Our temporal pooling method can 

map an audio sequence with arbitrary duration to a fixed length 

feature representation which can effectively capture the tem-

poral information of the entire sequence. With the employment 

of Support Vector Regression (SVR) [11], this method is very 

efficient during the whole feature learning process. After gener-

ating of the temporal features for all the audio samples, we train 

a Support Vector Machine (SVM) with the ones on training set 

to conduct classification on testing dataset. Compared with the 

baseline system [3], experimental results showed our method 

brings absolute improvements of 15.2%. More details about our 

framework will be covered in Section 2. 

2. PROPOSED FRAMEWORK 

The framework of our proposed CNN based Temporal Pooling 

method is illustrated in Figure 1. The whole procedure mainly 

consists of three stages: the frame-level feature extraction for 

the waveform audio segment, the patch-level FC feature learn-

ing using pre-trained CNN model and the high-level temporal 

feature learning using our proposed temporal pooling method. 

Once the temporal features for all the audio segments in devel-

opment dataset are generated, they will be classified with SVM. 
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2.1. Proposed CNN Architecture 

Inspired by [4, 12], we proposed a CNN followed a VGG style 

network for our classification task. The model architecture is 

similar with the one proposed in [12], which is shown in Table 1. 

Experimental results showed that, when we used the original 

network setting in [12] on the ASC development dataset, the 

model overfitting is rather serious. Hence, three modifications 

had been made to alleviate the overfitting of the model: (1) re-

ducing the filter numbers by half in each convolutional layer and 

using filters with larger size; (2) enlarging the pooling size of 

the last max-pooling layer and adding dropout operation to each 

max-pooling layer; (3) using smaller full-connected layers and 

removing one of them. With these modifications, the perfor-

mance of our CNN architecture had significantly improved and 

the parameters scale had been reduced from 2.3108 to 3.8105. 

Furthermore, to accelerate convergence, we also performed 

Batch Normalization (BN) [13] for each convolutional layer and 

full-connected layer (except for the last FC layer) during train-

ing. More details about the network setting will be further dis-

cussed in Section 3.2. 

 

Table 1: The architecture of proposed CNN. 

Layer Type Layer Description 

Conv 
Conv1_1 55 (1, 32) - BN - ReLu 

Conv1_2 55 (32, 32) - BN - ReLu 

Pool Max-Pooling 22 - Dropout (0.3) 

Conv 
Conv2_1 55 (32, 64) - BN - ReLu 

Conv2_2 55 (64, 64) - BN - ReLu 

Pool Max-Pooling 134 - Dropout (0.3) 

FC 
FC3_256 - BN - ReLu - Dropout (0.5) 

FC4_10 - ReLu 

Softmax 10-way 

#param: 3.8105 

2.2. Multi-Layered Temporal Pooling 

In this section, we present the main idea of proposed Multi-

Layered Temporal Pooling method and how it works in our pro-

posed framework. The performance of an ASC system is highly 

depending on the discriminative information in the categorical 

prior knowledge and the latent temporal dynamics of the audio 

signal. For one training audio sample, the proposed CNN can 

capture the effective discriminative information from its small 

patches and label, however, the individual learning mechanism 

would lose some important temporal dynamics of the whole 

sequence. Motivated by [14, 15], we proposed a temporal fea-

ture learning method based on a regularized SVR to capture the 

temporal variations in audio signals. As the framework shown in 

Figure 1, the temporal pooling method takes the mid-level CNN 

features as the input. Hence, to adequately model such deep 

learned complex features sequence, we extend the temporal 

pooling into the hierarchical multi-layered structure, we call it 

Multi-Layered Temporal Pooling.  

For better understanding our MLTP method, a simple 

MLTP architecture with two layers is illustrated in Figure 2. Let 

X(l) = {x1
(l), …, xt

(l)} represent the input feature sequence for 

layer l. In this temporal pooling layer, we first conduct a non-

linear feature mapping () for X(l), which is used for capture the 

complex dynamic information contains in the audio sequence. 
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Figure 2: Multi-Layered Temporal Pooling with two layers. 

 

In our work, we adopt 2 kernel and posneg kernel [16] to 

do non-linear feature mapping respectively. The latter one can 

be regarded as a simplified version of Hellinger kernel, where 

the primal form of Hellinger kernel function is given as, 

( , )

ˆ ˆ .

T

hell
K x y x y

where x x i x x ix   



   

，  
(1) 

where x+ and x- represents the non-negative and the negative 

part of the input respectively. Directly using (1) can bring a very 

complex kernel, hence, we use the simplified version of 

Hellinger kernel called posneg as, 
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where KRe{hell} is the real part of Khell, x* represents the expan-

sion of x which divides the original feature into the non-negative 

and the negative parts. Due to the using of ReLu in our CNN 

architecture, each activation layer only produces the positive 

values, however, the negative parts may also reflect dynamic 

changes in the sequence. It is somehow reasonable to consider 

both positive and negative activations of the sequence, therefore, 

we use the FC outputs before ReLu Units as the MLTP input 

feature. In our experiments, with the help of posneg feature 

mapping, the ASC performance improved. 

Once the non-linear feature mapping complete, we will ob-

tain the expanded feature sequence ( X(l)) for the temporal 

pooling. For better description, we use V = {v1, …, vT} repre-

sents the feature sequence ( X(l)). The temporal pooling opera-

tion () can be regarded as a sequence encoding, its goal is to 

transform V into a single fixed dimensional vector (V) which 

captures the latent temporal information of the sequence. To 
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achieve this goal, we use a linear function f (vt ; u) = uTvt, where 

vt  V with the parameters u to reconstruct the temporal infor-

mation, and try to learn u such that f should satisfy the con-

straint given in (3), 

    ,
a bt t a bf v f v where t t   (3) 

where ta and tb are the time indexes of the input sequence. To 

find this optimal vector, we exploit a point-by-point optimiza-

tion strategy based on SVR, which makes a direct connection 

between each vt and t, the formula is given in (4),  
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where vt is the feature vector at time t, and t is taken as the 

label, []>0 = max{, 0} is the -insensitive loss function [17], 

the regularization factor C is a tradeoff between the flatness of 

fitting function and the reconstruction error tolerance range. 

When the algorithm meets the convergence conditions, the op-

timal vector u will be generated as the temporal feature for the 

input sequence. 

For our MLTP, each successive layer captures the temporal 

dynamics of the output of the previous layer in the sliding win-

dow manner, each pooling operation takes the sub-sequence of 

the input with a fixed length. Hence, we can control the depth of 

the whole structure and the width of each layer by varying the 

stride and window size for each layer. According to the experi-

mental experience, a 2-layer MLTP with window size three and 

stride two is sufficient for our task. After the temporal feature 

learning, we take the final vector as the representation of corre-

sponding audio segment to train the SVM classifier, and then 

use it to classify the testing data in the development set. 

3. EXPERIMENTS AND RESULTS 

3.1. Feature Extraction 

Through all the experiments, we convert the audio samples to 

48 kHz sampling rate, 16 bits/sample, mono channel (the mono 

channel samples were generated by averaging the two channels 

samples). Before training our proposed CNN, we extracted 40, 

80 and 120 bands log-mel energies for each converted audio 

samples respectively with frame size 40ms and 50% overlap. In 

our work, the frame-level log-mel energies can be regarded as 

the low-level descriptors, and to obtain the temporal information 

during the MLTP training, each low-level descriptor should be 

split into smaller patches with fixed length. Finally, each patch 

has 50 frames (i.e. 1sec), and patches with three different sizes: 

(50, 40), (50, 80) and (50, 120) were respectively used as the 

network inputs to train the CNN models. 

3.2. CNN Training Parameters and Results 

During training, the initial learning rate was set to 0.1 and de-

creased in the logarithmic domain every epoch. The training 

strategy was mini-batch gradient descent based on back propa-

gation with 128 batch size and 0.9 momentum. To alleviate 

overfitting, the L2-Regularization was added to the cross-

entropy loss with a weight decay of 0.001, and we also applied 

dropout [1] after the first, second max-pooling layer and the last 

full-connected layer with probabilities 0.3, 0.3 and 0.5. 

Before training, we first normalized the log-mel energies 

for each frame, and then we calculated the means and the stand-

ard deviations through time on the training set to standardize all 

the input patches. The input patches used for the training were 

split with 25% overlap, but during testing, the patches were 

extracted with no overlap. In our work, the network is used to 

generate the mid-level descriptors for the MLTP training, hence 

we only evaluate the networks after 20 epohs with the patch-

wise accuracy.  

 

Table 2: The patch accuracy comparison of the proposed convo-

lutional neural network under different input patches within 20 

epochs. 

Log-mel 

Bands 

Training set 

Overlap 

Best Acc. 

at Epoh 

Patch Acc. 

[%] 

40 0% 12 62.1 

40 25% 10 63.5 

80 0% 14 63.7 

80 25% 11 65.0 

120 0% 8 64.6 

120 25% 8 65.6 

 

Results in Table 2 showed that, when 120 log-mel bands 

energies and 25% patch overlap were used, the network 

achieved the best performance. And by using Batch Normaliza-

tion for the outputs of each layer, the model can convergence 

within 20 epohs during all the experiments. Then, we saved the 

model parameters with the highest patch-size accuracy to extract 

the mid-level descriptors for the next MLTP training. 

3.3. Classifying with MLTP Features 

We used the pre-trained CNN model with the best performance 

mentioned in Section 3.2 to get the last full-connected (FC) 

layer output for each input patch with 25% overlap in develop-

ment dataset. Thus, each audio sample there would be repre-

sented by a mid-level features sequence formed by these FC 

vectors. Then, our proposed MLTP method would use this se-

quence as input to generate the MLTP feature for the corre-

sponding audio sample. 

As mentioned in Section 2.2, the MLTP framework is con-

sist of two major components: the non-linear feature mapping 

and the temporal pooling based on SVR. In this case, we con-

ducted two sets of experiments one by one to find the optimal 

MLTP configuration for our ASC task. In the first set, we fixed 

the feature mapping kernel type and SVM classifier kernel func-

tion with proposed posneg kernel and the 2 kernel respectively 

in advance. Under this condition, we attempted to investigate 

the optimal SVR penalty factor  for the MLTP according to the 

classification accuracy. Results in Table 3 showed that, when 

the penalty factor  was set to 110-5, the proposed system 

achieved the best performance. Then this parameter will be 

fixed in the following experiments. 
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Table 3: Classification accuracy comparison of the proposed 

CNN based MLTP method under different SVR penalty factors. 

MLTP Architecture 
Feature 

Mapping 
 

SVM 

Kernel 

Acc. 

[%] 

Layers = 2 

1st layer:  

Win = 3; 

Stride = 2; 

2nd layer: 

Win = -1; 

Stride = 0; 
Note: -1 represents the 

whole sequence 

posneg 

1 

2 

72.99 

0.1 72.44 

0.01 72.64 

110-3 73.07 

110-4 73.03 

110-5 73.11 

110-6 73.03 

 

Table 4: Classification accuracy comparison of the proposed 

method using different kernels for feature mapping and SVM. 

Feature Mapping SVM Kernel Acc. [%] 

posneg 

posneg 74.15 

2 73.57 

posneg + 2 74.23 

2 

posneg 73.99 

2 73.33 

posneg + 2 74.07 

posneg + 2 

posneg 75.28 

2 74.32 

posneg + 2 74.32 

 

 By using the optimal penalty factor found in the first set of 

experiments, we further investigated how different kernel types 

applied in feature mapping and SVM classifier effect the per-

formance of our proposed method. As the results illustrated in 

Table 4, when we combined the two types of kernel: posneg and 

2 in the feature mapping, the system achieved better perfor-

mance than the cases of using them alone. And the best accura-

cy 75.28% was achieved when the posneg kernel was applied 

for the classifier.  

To have a better observation about the performance of our 

proposed temporal pooling method MLTP_CNN, the class-wise 

accuracies of the optimal configuration found in the above two 

sets of experiments are further given in Table 5. Comparing 

with the baseline system provided by DCASE 2018 [3], the 

average class-wise accuracy had been improved by our method 

with absolute 15.6 percent.  

 

Table 5: The class-wise accuracy comparison on the develop-

ment dataset. 

Scene Label 
Accuracy [%] 

Baseline [3] CNN_MLTP 

Airport 72.9 76.6 

Bus 62.9 74.0 

Metro 51.2 72.8 

Metro Station 55.4 75.7 

Park 79.1 83.1 

Public Square 40.4 56.0 

Shopping Mall 49.6 81.7 

Street Pedestrian 50.0 70.8 

Street Traffic 80.5 87.4 

Tram 55.1 74.7 

Average 59.7 ( 0.7) 75.3( 0.1) 

3.4. Submissions 

All the experiments shown in Table 2-5 were conducted with 

the default training/testing split of the DCASE 2018 develop-

ment dataset. To achieve better final evaluation results for task 

1, we utilize the full development dataset to our final model. 

We submit two outputs for our system using two different SVM 

penalty factors: 0.05 and 0.1, which have achieved 70.66% and 

73.33% accuracy respectively on the Kaggle leaderboard da-

taset [18]. The other parameters for the submitted system were 

choosed based on the optimal settings found in our previous 

experiments on the development set. 

4. CONCLUSION AND FUTUREWORK 

In this report, we proposed an efficient novel multiple layer 

temporal feature learning method for ASC task, which can ef-

fectively capture the temporal dynamics for an entire audio data 

with arbitrary duration. The experimental results on the devel-

opment dataset showed that, our MLTP method indeed im-

proved the ASC performance. Moreover, based on our experi-

ence in CNN training part, the pre-trained model with better 

performance is more helpful to the proposed framework.  

However, for the shortcomings in our present work, there 

is still room for improvements. For the MLTP part, we only use 

the patches with one second duration, more experiments with 

multiple time scale patches should be conducted in the future. 

For the networks part, more suitable frame-level features 

should be selected, useful data augmentation technology should 

be considered and better structured networks should be adopted. 

Furthermore, the present temporal feature learning process is 

divided into two parts, which is lack of simplicity. Therefore, 

more concise end-to-end formed framework which can jointly 

learn the discriminative information and temporal dynamics 

should be proposed in the future. 
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