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ABSTRACT 

This paper describes our submission to the DCASE 2019 chal-

lenge Task 2 "Audio tagging with noisy labels and minimal su-

pervision" [1]. This task is a multi-label audio classification with 

80 classes. The training data is composed of a small amount of 

reliably labeled data (curated data) and a larger amount of data 

with unreliable labels (noisy data). Additionally, there is a differ-

ence between data distribution between curated data and noisy 

data. To tackle this difficulty, we propose three strategies. The 

first is multitask learning using noisy data. The second is semi-

supervised learning (SSL) using input data with a different distri-

bution from labeled input data. The third is an ensemble method 

that averages models learned with different time windows. By us-

ing these methods, we achieved a score of 0.750 with label-

weighted label-ranking average precision (lwlrap), which is in the 

top 1% on the public leaderboard (LB). 

Index Terms— Audio-Tagging, Noisy Labels, Multitask Learn-

ing, Semi-supervised Learning, Model Ensemble 

1. MULTITASK LEARNING 

In this task, the curated data and noisy data are labeled in a differ-

ent manner, therefore treating them as the same one makes the 

model performance worse. To tackle this problem, we used a mul-

titask learning approach [2]. The aim of multitasking learning is 

to get synergy between 2 tasks without reducing the performance 

of each task. Multitask learning learns features shared between 

two tasks and can be expected to achieve higher performance than 

learning independently. In our proposal, an encoder architecture 

learns the features shared between curated and noisy data, and the 

two separated FC layers learn the difference between the two data 

(Fig. 1). In this way, we can get the advantages of feature learning 

from noisy data and avoid the disadvantages of noisy label pertur-

bation. The loss weight ratio of curated and noisy is set as 1:1. By 

this method, cross validation (CV) lwlrap improved from 0.829 to 

0.849 and score on the public LB increased + 0.021. 

2. SEMI-SUPERVISED LEARNING 

Because treating the noisy labels as same as the curated labels 

makes the model performance worse, it may be promising to do 

semi-supervised learning (SSL) using the noisy data without the 

noisy labels. However, this task is different from the data that SSL 

is generally applied in two point. The first, there is a difference of 

data distribution between labeled data and unlabeled data. The sec-

ond, this is a multi-label classification task. This makes it difficult 

to apply SSL. In particular, the method that generates labels online 

like Mean teacher [3] or MixMatch [4] tends to collapse. We tried 

pseudo label [5], Mean Teacher and MixMatch and all of them are 

not successful. 

 
Figure 1: Over all architecture of our proposed model. (1) Basic 

classification (2) Soft pseudo labeling (3) Multitask learning with 

noisy labels 

 

Therefore, we propose an SSL method that is robust to data 

distribution difference and can handle multi-label data (Fig. 1). For 

each noisy data sample, we guess the label using the trained model. 

The guessed label is sharpened by sharpening function proposed 

by MixMatch. We call this soft pseudo label. The basic pseudo 

label is a one-hot label with only one positive label so that can not 

apply to multi-label data. In contrast, the soft pseudo label is 

slightly sharpened label distribution and suits for multi-label data. 

Learning with soft pseudo labels is performed in parallel with mul-

titask learning. As the temperature of sharpening function, we tried 

a value of 1, 1.5 or 2 and 2 was the best. Predictions of the trained 

model are obtained using snapshot ensemble [6] with all the folds 

and cycle snapshots of 5-fold CV. We used mean squared error 

(MSE) as a loss function. we set loss weight of semi-supervised 

learning as 20. 

By soft pseudo labeling, The CV lwlrap improved from 0.849 

to 0.870 (Table 1, 5-fold soft pseudo label). On the other hand, on 

the public LB, improvement in score was slight (+0.001). We use 

predictions of all fold models to generate soft pseudo label so that 

high CV may be because of indirect label leak. However, even if 

we use labels generated by only the same fold model which has no 

label leak, CV was improved as compared to one without SSL (Ta-

ble 1, 1-fold soft pseudo label). The model trained with the soft 

pseudo label is useful as a component of model averaging (+0.003 

on the public LB). 
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3. PREPROCESSING 

We used both waveform and log mel spectrogram as input data. 

These two data types are expected to compensate for each other. 

3.1. Waveform 

We tried a sampling rate of 44.1 kHz (original data) and 22.05 kHz 

and 44.1 kHz was better. Each input data was regularized into a 

range of from -1 to +1 by dividing by 32,768, the full range of 16-

bit audio. 

3.2. Log mel spectrogram 

For the log mel spectrogram transformation, we used 128 mel fre-

quency channels. we tried 64 and 256 but model performance de-

creased. The STFT hop size of 347 was used that makes log mel 

spectrogram 128 Hz time resolution. Log mel spectrogram was 

converted from power to dB after all augmentations applied. 

Thereafter, it was normalized by the mean and standard deviation 

of each data. Therefore, the mean and standard deviation values 

change every time and this works as a kind of augmentation. Nor-

malization using the mean and standard deviation of the whole 

data decreased model performance.  

4. AUGMENTATIONS 

4.1. Augmentations for log mel spectrogram 

4.1.1. MixUp/BC learning 

MixUp/BC learning [7, 8] is an augmentation that mixes two pairs 

of inputs and labels with some ratio. The mixing ratio is selected 

from the beta distribution. We used alpha of 1.0 for Beta distribu-

tion. This makes Beta distribution equal to uniform distribution. 

4.1.2. SpecAugment 

SpecAugment [9] is an augmentation method for log mel spectro-

gram consists of three kinds of deformation. The first is time warp-

ing that deforms time-series in the time direction. The other two 

augmentations are time and frequency masking, modifications of 

Cutout [10], that masks a block of consecutive time steps or mel 

frequency channels. We applied frequency masking and masking 

width is chosen from 8 to 32 from a uniform distribution. Time 

warping and time masking are not effective in this task and we 

didn’t apply them to our models. 

4.1.3. Slicing 

For training, audio samples which have various time lengths are 

converted to a certain length by random slicing. The sound sam-

ples which have short length than the slicing length are extended 

to the slicing length by zero paddings. We tried 2, 4 and 8 seconds 

(256, 521 and 1024 dimensions) as a slicing length and 4 seconds 

scores the best. Averaging models trained with 4-second slicing 

and 8-second slicing achieved a better score. 

Expecting more strong augmentation effect, after basic slic-

ing, we shorten data samples in a range of 25 - 100% of the basic 

slicing-length by additional slicing and extend to the basic slicing 

-length by zero paddings. For data samples with a time length 

shorter than the basic slicing-length, we shorten data samples in a 

range of 25 - 100% of original length by additional slicing and 

extend to the basic slicing-length by zero paddings. We call this 

additional slicing. 

4.1.4. Other augmentations 

We used gain augmentation with a factor randomly selected from 

a range of 0.80 -1.20. We tried scaling augmentation and white 

noise augmentation but model performance decreased.  

4.2. Augmentations for waveform 

4.2.1. MixUp/BC learning 

We applied MixUp to waveform input. We used alpha of 1.0 for 

Beta distribution as same as the case of log mel spectrogram. 

4.2.2. Slicing 

We applied slicing to waveform input. We tried 1.51, 3.02 and 

4.54 seconds (66,650, 133,300 and 200,000 dimensions) as a slic-

ing length and 4.54 seconds scores the best. Averaging models 

trained with 3.02-second slicing and 4.54-second slicing achieved 

a better score. 

4.2.3. Other augmentations 

We used scale augmentation with a factor randomly selected from 

a range of 0.8 - 1.25 and gain augmentation with a factor randomly 

selected from a range of 0.501 - 2.00. 

5.  MODEL ARCHITECTURE 

5.1. ResNet 

We selected ResNet [11] as a classification encoder model for log 

mel spectrogram. We compared ResNet18, ResNet34 and SE-

ResNeXt50 [12] and ResNet34 performed the best. The number 

of trainable parameters including the multitask module is 

44,210,576. We applied a global max pooling (GMP) after con-

volutional layers to allow variable input length. 

5.2. EnvNet 

We selected EnvNet-v2 [8] as a classification encoder model for 

waveform. The number of trainable parameters including the mul-

titask module is 4,128,912. As same as ResNet, we applied a GMP 

after convolutional layers to allow variable input length. 

5.3. Multitask module 
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For multitask learning, two separate full-connect (FC) layer se-

quences follow after encoder and GMP. The contents of both se-

quences are same and consist of FC (1024 cells) – ReLU - Drop-

Out (drop rate = 0.2) - FC (1024 cells) – ReLU - DropOut (drop 

rate = 0.1) - FC (80 cells) - sigmoid. Sigmoid is replaced by soft-

max in model # 5 and 6 of EnvNet (Table 1). 

6. TRAINING 

6.1. ResNet 

Adam [13] was used for optimization. Cyclic cosine annealing 

[14] was used for learning rate schedule. In each cycle, the learn-

ing rate is started with 1e-3 and decrease to 1e-6. There are 64 

epochs per cycle. We used a batch size of 32 or 64. We used bi-

nary crossentropy as a loss function for basic classification and 

multitask learning with noisy data. We used mean squared error 

as a loss function for the soft pseudo label. 

6.2. EnvNet 

Stochastic gradient descent (SGD) was used for optimization. Cy-

clic cosine annealing was used for learning rate schedule. In each 

cycle, the learning rate is started with 1e-1 and decrease to 1e-6. 

There are 80 epochs per cycle. We used binary crossentropy as a 

loss function for the model using sigmoid and Kullback-Leibler 

(KL) divergence for the model using softmax. We used a batch 

size of 16 for the model using sigmoid and 64 for the model using 

softmax.  

7. POSTPROCESSING AND ENSEMBLE 

Prediction using the full length of audio input scores better than 

prediction using test time augmentation (TTA) with sliced audio 

input. This may be because important components for classifica-

tion is concentrated on the beginning part of audio samples. Ac-

tually, prediction with slices of the beginning part scores better 

than prediction with slices of the latter part. In order to speed up 

the calculation, audio samples with similar lengths were grouped 

together, and the lengths of samples in the same group were ad-

justed to the same length by zero paddings and converted to mini-

batches. The patience for the difference of length within a group 

(patience rate) was adjusted based on the prediction speed. 

We found padding augmentation is effective TTA. This is an 

augmentation method that applies zero paddings to both sides of 

audio samples with various length and averages prediction results. 

We think this method has an effect to emphasize the start and the 

end part of audio samples. 

For model averaging, we prepared models trained with vari-

ous conditions. Especially, we found that averaging with models 

trained with different time window is effective (Table 1 #7) 

The model weights of each cycle were saved and used for 

snapshot ensemble. In order to reduce prediction time, the cycles 

and padding lengths used for the ensemble were chosen based on 

CV. The predictions selected are 5 fold × (model #1 × cycle = 2, 

4, 7 and 8 × padding = 8, 64 + model #2 × cycle =  1, 2, 6 and 7 × 

padding = 8, 64  + model #3 × cycle = 2, 4 and 6 × padding = 8, 

64 + model #4 × cycle = 2 and 3 × padding = 0, 32k + model #5 

× cycle 3 and 5 × padding = 8k, 32k + model #6 × cycle = 7 and 

9 × padding = 8k, 32k) = 170 predictions (submission 1). The 

weights of each model for averaging are model # 1: 2: 3: 4: 5: 6 = 

3: 4: 3: 1: 1: 1, which is chosen based on CV. In the simplified 

version submission, the selected predictions are 5 fold × (model 

#1 × cycle = 2, 4, 7 and 8  × padding = 8 + model #2 × cycle =  1, 

2, 4, 6 and 7 × padding = 8 + model #3 × cycle = 2, 4 and 6 × 

padding = 8 + model #4 × cycle = 2 and 3 × padding = 8k + model 

#5 × cycle 3 and 5 × padding = 8k + model #6 × cycle = 6, 7 and 

9 × padding = 8k) = 95 predictions (submission 2). The weights 

for averaging are the same as submission 1. 

8. COMPARISON 

Table 1 shows the results of each learning condition. The score is 

lwlrap of 5-fold CV. Table 2 shows the results of each model av-

eraging condition.  

 

Table 1: Comparison of each learning condition. CV lwlrap is cal-

culated based on the best epoch of each fold in 5-fold CV except 

for #8, which is calculated based on the final epoch.  

# condition CV lwlrap 

1 ResNet34, 512 epoch/cycle × 1, 

slice length = 512, batch size = 64 

0.724 

2 #1 + MixUp, frequency masking and 

gain 

0.829 

3 #2 changed to 64 epoch/cycle × 8 0.829 

4 #3 + multitask (model #1) 0.849 

5 #4 + 5-fold soft pseudo label, batch size 

= 32, + additional slicing, 

64 epoch/cycle × 7, use #1 weights as 

pretrained weights (model #2) 

0.870 

6 #5 changed to 1-fold soft pseudo label 0.858 

7 #4 changed to slice length = 1,024 

(model #3), 64 epoch/cycle × 6 

0.840 

8 EnvNetV2, 400 epoch/cycle × 1, 

slice length = 133,300, batch size = 16,  

augmentation = MixUp, gain and scal-

ing, multitask, softmax 

0.809 

9 #8 changed to sigmoid, batch size = 64,  

80 epoch/cycle × 3, use #8 weights as 

pretrained weight (model #4) 

0.814 

10 #8 changed to 80 epoch/cycle × 5, use 

#8 weights as pretrained weight (model 

#5) 

0.818 

11 #10 changed to 80 epoch/cycle × 10, 

slice = 200,000 (model #6) 

0.820 

 

Table 2: Comparison of model averaging. 

# condition CV lwlrap 

1 model #1 cycle = 1-8, pad = 8, 32 0.868 

2 model #2 cycle = 1-7, pad = 8, 32 0.886 

3 model #3 cycle = 1-6, pad = 8, 32 0.862 

4 model #4 cycle = 1-3, pad = 8k, 32k 0.815 

5 model #5 cycle = 1-5, pad = 8k, 32k 0.818 

6 model #6 cycle = 5-10, pad = 8k, 32k 0.820 

7 #1 + #3 0.876 

8 #1 + #2 + #3 0.890 

9 #4 + #5 + #6 0.836 

10 submission 1 0.896 

11 submission 2 0.895 
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