
Detection and Classification of Acoustic Scenes and Events 2019 Challenge

MULTITASK LEARNING AND SEMI-SUPERVISED LEARNING WITH NOISY DATA

FOR AUDIO TAGGING

Technical Report

Osamu Akiyama Junya Sato

Osaka University

Faculty of Medicine

oakiyama1986@gmail.com

Osaka University

Faculty of Medicine

junya.sto@gmail.com

ABSTRACT

This paper describes our submission to the DCASE 2019 chal-

lenge Task 2 "Audio tagging with noisy labels and minimal su-

pervision" [1]. This task is a multi-label audio classification with

80 classes. The training data is composed of a small amount of

reliably labeled data (curated data) and a larger amount of data

with unreliable labels (noisy data). Additionally, there is a differ-

ence between data distribution between curated data and noisy

data. To tackle this difficulty, we propose three strategies. The

first is multitask learning using noisy data. The second is semi-

supervised learning (SSL) using input data with a different distri-

bution from labeled input data. The third is an ensemble method

that averages models learned with different time windows. By us-

ing these methods, we achieved a score of 0.750 with label-

weighted label-ranking average precision (lwlrap), which is in the

top 1% on the public leaderboard (LB).

Index Terms— Audio-Tagging, Noisy Labels, Multitask Learn-

ing, Semi-supervised Learning, Model Ensemble

1. MULTITASK LEARNING

In this task, the curated data and noisy data are labeled in a differ-

ent manner, therefore treating them as the same one makes the

model performance worse. To tackle this problem, we used a mul-

titask learning approach [2]. The aim of multitasking learning is

to get synergy between 2 tasks without reducing the performance

of each task. Multitask learning learns features shared between

two tasks and can be expected to achieve higher performance than

learning independently. In our proposal, an encoder architecture

learns the features shared between curated and noisy data, and the

two separated FC layers learn the difference between the two data

(Fig. 1). In this way, we can get the advantages of feature learning

from noisy data and avoid the disadvantages of noisy label pertur-

bation. The loss weight ratio of curated and noisy is set as 1:1. By

this method, cross validation (CV) lwlrap improved from 0.829 to

0.849 and score on the public LB increased + 0.021.

2. SEMI-SUPERVISED LEARNING

Because treating the noisy labels as same as the curated labels

makes the model performance worse, it may be promising to do

semi-supervised learning (SSL) using the noisy data without the

noisy labels. However, this task is different from the data that SSL

is generally applied in two point. The first, there is a difference of

data distribution between labeled data and unlabeled data. The sec-

ond, this is a multi-label classification task. This makes it difficult

to apply SSL. In particular, the method that generates labels online

like Mean teacher [3] or MixMatch [4] tends to collapse. We tried

pseudo label [5], Mean Teacher and MixMatch and all of them are

not successful.

Figure 1: Over all architecture of our proposed model. (1) Basic

classification (2) Soft pseudo labeling (3) Multitask learning with

noisy labels

Therefore, we propose an SSL method that is robust to data

distribution difference and can handle multi-label data (Fig. 1). For

each noisy data sample, we guess the label using the trained model.

The guessed label is sharpened by sharpening function proposed

by MixMatch. We call this soft pseudo label. The basic pseudo

label is a one-hot label with only one positive label so that can not

apply to multi-label data. In contrast, the soft pseudo label is

slightly sharpened label distribution and suits for multi-label data.

Learning with soft pseudo labels is performed in parallel with mul-

titask learning. As the temperature of sharpening function, we tried

a value of 1, 1.5 or 2 and 2 was the best. Predictions of the trained

model are obtained using snapshot ensemble [6] with all the folds

and cycle snapshots of 5-fold CV. We used mean squared error

(MSE) as a loss function. we set loss weight of semi-supervised

learning as 20.

By soft pseudo labeling, The CV lwlrap improved from 0.849

to 0.870 (Table 1, 5-fold soft pseudo label). On the other hand, on

the public LB, improvement in score was slight (+0.001). We use

predictions of all fold models to generate soft pseudo label so that

high CV may be because of indirect label leak. However, even if

we use labels generated by only the same fold model which has no

label leak, CV was improved as compared to one without SSL (Ta-

ble 1, 1-fold soft pseudo label). The model trained with the soft

pseudo label is useful as a component of model averaging (+0.003

on the public LB).

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

3. PREPROCESSING

We used both waveform and log mel spectrogram as input data.

These two data types are expected to compensate for each other.

3.1. Waveform

We tried a sampling rate of 44.1 kHz (original data) and 22.05 kHz

and 44.1 kHz was better. Each input data was regularized into a

range of from -1 to +1 by dividing by 32,768, the full range of 16-

bit audio.

3.2. Log mel spectrogram

For the log mel spectrogram transformation, we used 128 mel fre-

quency channels. we tried 64 and 256 but model performance de-

creased. The STFT hop size of 347 was used that makes log mel

spectrogram 128 Hz time resolution. Log mel spectrogram was

converted from power to dB after all augmentations applied.

Thereafter, it was normalized by the mean and standard deviation

of each data. Therefore, the mean and standard deviation values

change every time and this works as a kind of augmentation. Nor-

malization using the mean and standard deviation of the whole

data decreased model performance.

4. AUGMENTATIONS

4.1. Augmentations for log mel spectrogram

4.1.1. MixUp/BC learning

MixUp/BC learning [7, 8] is an augmentation that mixes two pairs

of inputs and labels with some ratio. The mixing ratio is selected

from the beta distribution. We used alpha of 1.0 for Beta distribu-

tion. This makes Beta distribution equal to uniform distribution.

4.1.2. SpecAugment

SpecAugment [9] is an augmentation method for log mel spectro-

gram consists of three kinds of deformation. The first is time warp-

ing that deforms time-series in the time direction. The other two

augmentations are time and frequency masking, modifications of

Cutout [10], that masks a block of consecutive time steps or mel

frequency channels. We applied frequency masking and masking

width is chosen from 8 to 32 from a uniform distribution. Time

warping and time masking are not effective in this task and we

didn’t apply them to our models.

4.1.3. Slicing

For training, audio samples which have various time lengths are

converted to a certain length by random slicing. The sound sam-

ples which have short length than the slicing length are extended

to the slicing length by zero paddings. We tried 2, 4 and 8 seconds

(256, 521 and 1024 dimensions) as a slicing length and 4 seconds

scores the best. Averaging models trained with 4-second slicing

and 8-second slicing achieved a better score.

Expecting more strong augmentation effect, after basic slic-

ing, we shorten data samples in a range of 25 - 100% of the basic

slicing-length by additional slicing and extend to the basic slicing

-length by zero paddings. For data samples with a time length

shorter than the basic slicing-length, we shorten data samples in a

range of 25 - 100% of original length by additional slicing and

extend to the basic slicing-length by zero paddings. We call this

additional slicing.

4.1.4. Other augmentations

We used gain augmentation with a factor randomly selected from

a range of 0.80 -1.20. We tried scaling augmentation and white

noise augmentation but model performance decreased.

4.2. Augmentations for waveform

4.2.1. MixUp/BC learning

We applied MixUp to waveform input. We used alpha of 1.0 for

Beta distribution as same as the case of log mel spectrogram.

4.2.2. Slicing

We applied slicing to waveform input. We tried 1.51, 3.02 and

4.54 seconds (66,650, 133,300 and 200,000 dimensions) as a slic-

ing length and 4.54 seconds scores the best. Averaging models

trained with 3.02-second slicing and 4.54-second slicing achieved

a better score.

4.2.3. Other augmentations

We used scale augmentation with a factor randomly selected from

a range of 0.8 - 1.25 and gain augmentation with a factor randomly

selected from a range of 0.501 - 2.00.

5. MODEL ARCHITECTURE

5.1. ResNet

We selected ResNet [11] as a classification encoder model for log

mel spectrogram. We compared ResNet18, ResNet34 and SE-

ResNeXt50 [12] and ResNet34 performed the best. The number

of trainable parameters including the multitask module is

44,210,576. We applied a global max pooling (GMP) after con-

volutional layers to allow variable input length.

5.2. EnvNet

We selected EnvNet-v2 [8] as a classification encoder model for

waveform. The number of trainable parameters including the mul-

titask module is 4,128,912. As same as ResNet, we applied a GMP

after convolutional layers to allow variable input length.

5.3. Multitask module

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

For multitask learning, two separate full-connect (FC) layer se-

quences follow after encoder and GMP. The contents of both se-

quences are same and consist of FC (1024 cells) – ReLU - Drop-

Out (drop rate = 0.2) - FC (1024 cells) – ReLU - DropOut (drop

rate = 0.1) - FC (80 cells) - sigmoid. Sigmoid is replaced by soft-

max in model # 5 and 6 of EnvNet (Table 1).

6. TRAINING

6.1. ResNet

Adam [13] was used for optimization. Cyclic cosine annealing

[14] was used for learning rate schedule. In each cycle, the learn-

ing rate is started with 1e-3 and decrease to 1e-6. There are 64

epochs per cycle. We used a batch size of 32 or 64. We used bi-

nary crossentropy as a loss function for basic classification and

multitask learning with noisy data. We used mean squared error

as a loss function for the soft pseudo label.

6.2. EnvNet

Stochastic gradient descent (SGD) was used for optimization. Cy-

clic cosine annealing was used for learning rate schedule. In each

cycle, the learning rate is started with 1e-1 and decrease to 1e-6.

There are 80 epochs per cycle. We used binary crossentropy as a

loss function for the model using sigmoid and Kullback-Leibler

(KL) divergence for the model using softmax. We used a batch

size of 16 for the model using sigmoid and 64 for the model using

softmax.

7. POSTPROCESSING AND ENSEMBLE

Prediction using the full length of audio input scores better than

prediction using test time augmentation (TTA) with sliced audio

input. This may be because important components for classifica-

tion is concentrated on the beginning part of audio samples. Ac-

tually, prediction with slices of the beginning part scores better

than prediction with slices of the latter part. In order to speed up

the calculation, audio samples with similar lengths were grouped

together, and the lengths of samples in the same group were ad-

justed to the same length by zero paddings and converted to mini-

batches. The patience for the difference of length within a group

(patience rate) was adjusted based on the prediction speed.

We found padding augmentation is effective TTA. This is an

augmentation method that applies zero paddings to both sides of

audio samples with various length and averages prediction results.

We think this method has an effect to emphasize the start and the

end part of audio samples.

For model averaging, we prepared models trained with vari-

ous conditions. Especially, we found that averaging with models

trained with different time window is effective (Table 1 #7)

The model weights of each cycle were saved and used for

snapshot ensemble. In order to reduce prediction time, the cycles

and padding lengths used for the ensemble were chosen based on

CV. The predictions selected are 5 fold × (model #1 × cycle = 2,

4, 7 and 8 × padding = 8, 64 + model #2 × cycle = 1, 2, 6 and 7 ×

padding = 8, 64 + model #3 × cycle = 2, 4 and 6 × padding = 8,

64 + model #4 × cycle = 2 and 3 × padding = 0, 32k + model #5

× cycle 3 and 5 × padding = 8k, 32k + model #6 × cycle = 7 and

9 × padding = 8k, 32k) = 170 predictions (submission 1). The

weights of each model for averaging are model # 1: 2: 3: 4: 5: 6 =

3: 4: 3: 1: 1: 1, which is chosen based on CV. In the simplified

version submission, the selected predictions are 5 fold × (model

#1 × cycle = 2, 4, 7 and 8 × padding = 8 + model #2 × cycle = 1,

2, 4, 6 and 7 × padding = 8 + model #3 × cycle = 2, 4 and 6 ×

padding = 8 + model #4 × cycle = 2 and 3 × padding = 8k + model

#5 × cycle 3 and 5 × padding = 8k + model #6 × cycle = 6, 7 and

9 × padding = 8k) = 95 predictions (submission 2). The weights

for averaging are the same as submission 1.

8. COMPARISON

Table 1 shows the results of each learning condition. The score is

lwlrap of 5-fold CV. Table 2 shows the results of each model av-

eraging condition.

Table 1: Comparison of each learning condition. CV lwlrap is cal-

culated based on the best epoch of each fold in 5-fold CV except

for #8, which is calculated based on the final epoch.

condition CV lwlrap

1 ResNet34, 512 epoch/cycle × 1,

slice length = 512, batch size = 64

0.724

2 #1 + MixUp, frequency masking and

gain

0.829

3 #2 changed to 64 epoch/cycle × 8 0.829

4 #3 + multitask (model #1) 0.849

5 #4 + 5-fold soft pseudo label, batch size

= 32, + additional slicing,

64 epoch/cycle × 7, use #1 weights as

pretrained weights (model #2)

0.870

6 #5 changed to 1-fold soft pseudo label 0.858

7 #4 changed to slice length = 1,024

(model #3), 64 epoch/cycle × 6

0.840

8 EnvNetV2, 400 epoch/cycle × 1,

slice length = 133,300, batch size = 16,

augmentation = MixUp, gain and scal-

ing, multitask, softmax

0.809

9 #8 changed to sigmoid, batch size = 64,

80 epoch/cycle × 3, use #8 weights as

pretrained weight (model #4)

0.814

10 #8 changed to 80 epoch/cycle × 5, use

#8 weights as pretrained weight (model

#5)

0.818

11 #10 changed to 80 epoch/cycle × 10,

slice = 200,000 (model #6)

0.820

Table 2: Comparison of model averaging.

condition CV lwlrap

1 model #1 cycle = 1-8, pad = 8, 32 0.868

2 model #2 cycle = 1-7, pad = 8, 32 0.886

3 model #3 cycle = 1-6, pad = 8, 32 0.862

4 model #4 cycle = 1-3, pad = 8k, 32k 0.815

5 model #5 cycle = 1-5, pad = 8k, 32k 0.818

6 model #6 cycle = 5-10, pad = 8k, 32k 0.820

7 #1 + #3 0.876

8 #1 + #2 + #3 0.890

9 #4 + #5 + #6 0.836

10 submission 1 0.896

11 submission 2 0.895

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

9. REFERENCES

[1] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, and X. Serra,

“Audio tagging with noisy labels and minimal supervision,”

arXiv preprint arXiv:1906.02975, 2019.

[2] S. Ruder, “An Overview of Multi-Task Learning in Deep

Neural Networks,” arXiv preprint arXiv:1706.05098, 2017.

[3] A. Tarvainen, and H. Valpola. “Mean teachers are better role

models: Weight-averaged consistency targets improve semi-

supervised deep learning results,” arXiv preprint

arXiv:1703.01780, 2017.

[4] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oli-

ver, and C. Raffel, “MixMatch: A Holistic Approach to Semi-

Supervised Learning,” arXiv preprint arXiv:1905.02249,

2019.

[5] D.-H. Lee, “Pseudo-label: The simple and efficient semi-su-

pervised learning method for deep neural networks,” in ICML

Workshop on Challenges in Representation Learning, 2013.

[6] G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q.

Weinberger, “Snapshot Ensembles: Train 1, get M for free,”

arXiv preprint arXiv:1704.00109, 2017.

[7] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,

“mixup: Beyond empirical risk minimization,” arXiv preprint

arXiv:1710.09412, 2017.

[8] Y. Tokozume, Y. Ushiku, and T Harada, “Learning from Be-

tween-class Examples for Deep Sound Recognition,” arXiv

preprint arXiv:1711.10282, 2017.

[9] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.

Cubuk, and Q. V. Le, “SpecAugment: A Simple Data Aug-

mentation Method for Automatic Speech Recognition,” arXiv

preprint arXiv:1904.08779, 2019.

[10] T. DeVries, and G. W. Taylor, “Improved Regularization of

Convolutional Neural Networks with Cutout,” arXiv preprint

arXiv:1708.04552, 2017.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2016, pp.

770-778.

[12] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Net-

works,” arXiv preprint arXiv:1709.01507, 2017.

[13] D. P. Kingma, and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

[14] I. Loshchilov, F. Hutter, “SGDR: Stochastic Gradient De-

scent with Warm Restarts,” arXiv preprint arXiv:1608.03983,

2016.

