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ABSTRACT

In this paper, we report our experiments in Sound Event Detection
in domestic environments in the framework of the DCASE 2019
Task 4 challenge. The novelty, this year, lies in the availability of
three different subsets for development: a weakly annotated dataset,
a strongly annotated synthetic subset, and an unlabeled subset. The
weak annotations, unlike the strong ones, provide tags from audio
events but do not provide temporal boundaries. The task objective
is twofold: detecting audio events (multi label tagging at record-
ing level), and localizing the events precisely within the recordings.
First, we explore multi-task training to take advantage of the syn-
thetic and unlabeled in domain subsets. Then, we applied various
temporal segmentation methods using optimization algorithms to
obtain the best performing segmentation parameters. On the multi-
task itself, we explored two strategies based on convolutional recur-
rent neural networks (CRNN): 1) a single branch model with two
outputs, 2) multi-branch models with two or three outputs. These
approaches outperform the baseline of 23.7% in F-score by a large
margin, with values of respectively 39.9% and 33.8% for the first
and second strategy, on the official validation subset comprised of
1103 recordings1.

Index Terms— Sound event detection, weakly supervised
learning, multi-task learning, convolutional neural networks,
pseudo labelling

1. INTRODUCTION

In this report, we present the approaches developed to address the
issue of sound event detection in domestic environments, in the
framework of the task 4 of the DCASE 2019 challenge. This task
evaluates systems for the large scale detection of sound events us-
ing weakly labeled data. For the 2019 edition, three datasets are
available for development: a weakly annotated dataset, a strongly
annotated synthetic subset, and an unlabeled subset.

Our processing pipeline relies on two phases. On one hand, we
use convolutional recurrent neural networks (CRNN) that follow a
multi-task learning paradigm [1].

On the other hand, the optimization stage works on the outputs
of these models to find the best audio tagging and temporal local-
ization algorithms. We will refer to this two optimizations as at
optimization and loc optimization.

1Code is available at:
https://github.com/topel/dcase19RCNNtask4
https://github.com/leocances/dcase2019

Figure 1: Model 1 (left): Mono-branch CRNN dual task model.
Localization is performed by a Time Distributed Dense layer.
Model 2 (right): Multi-branch CRNN. The localization output uses
its own recurrent and time distributed layers. The goal is to obtain
two separate branches specialized in either tagging or localizing. A
final multiplication layer before the loc output is a mask enforcing
the branch to focus only on the detected classes by the AT branch.

2. PROPOSED METHODS

The models are based on the baseline systems of last year DCASE
2018 challenge task 4 [2]. In extension, we use specific loss func-
tions adapted to the different subsets available. Two strategies are
explored, mono-branch model and multi-branch model. One output
is dedicated to providing predictions at clip level (at output) and
another one at frame level (loc output). This multi-task learning
approach showed competitive performance when using mixed an-
notated data. Based on this framework, we proposed three models
that are visible on Figures 1 and 2.
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Figure 2: Model 3: CRNN triple task model. Compared to model
2, a third branch has been added. It allows the exploitation of unla-
beled in domain data for a self supervised task.

Models 1 & 2

Models 1 and 2 were trained on both the weak and synthetic subsets
for audio tagging (AT), and localization (LOC) in the case strong
annotations are available. The synthetic subset was used for both
AT and LOC tasks whereas the weak subset only for AT. A binary
cross entropy loss function was used to train the models at both
tagging (AT) and localization (LOC) outputs.

Model 3

For this model, a third branch was added for a self supervised
task [3], exploiting the unlabeled in domain subset. This branch
aimed to predict if the input was transformed using a left/right mir-
roring, an up/down mirroring, both at the same time or left as is.
A binary cross entropy loss function was used to train the model
for tagging, localization, and self supervision (SELF). When strong
annotations or weak annotations are missing, the loss is set to zero
for AT and/or LOC.

3. POST PROCESSING

This section presents the post processing steps used within our sys-
tem, namely tagging, smoothing, segmenting, and optimizing. We
extend our previous work on localization optimization [4] by adding
optimization methods for tagging.

All models provide clip level and frame level predictions. These
are the outputs of sigmoid activation layers. Therefore, thresholds
must be applied to achieve tagging and segmentation. Given the di-
versity of the classes, those thresholds should adapt to each sound
event category. On the localization task, we retain only the local-
ization predictions of the predicted audio tags. Thus, the localiza-
tion of sound events heavily depends on the quality of the tagging.

Figure 3: Maximum threshold momentum centered on a 0.5 value.
At each iteration, the random δ is drawn from a normal distribution,
centered on the value of the last best threshold of the targeted class
during the optimizing process

Smoothing predictions proved to be essential to ensure best perfor-
mance.

The tagging task is simpler, the AT output is binarized using
either class independent (CI) thresholds or class dependent thresh-
olds. We tested two approaches to estimate the best thresholds.

3.1. Threshold optimization for tagging

The purpose of this optimization step is to get the best tagging per-
formance of the model. To do so, it must maximize the score for
each class individually. We tested two way to achieve this.

• The simplest way consists of testing values between 0 and 1
with a specific precision, and this for each class c indepen-
dently. Computation time is directly depending on the step
size.

• The second approach, more complex, uses a genetic algo-
rithm [5] that draws a value δ randomly drawn from a normal
distribution N(0.5, σ) (Figure 3). This value is then added to
or subtracted from the current threshold thc estimate. In this
way, the modification will be higher around 0.5 and lower at
the boundaries (0 and 1). σ is then used to set the delta decay
value according to its distance from the center. The computa-
tion time depends on the number of iterations.

Using either a classic exhaustive approach or the genetic algo-
rithm is directly driven by the application, and the thresholds preci-
sion desired. On the 10 classes of task 4, for a precision of 102 on
each threshold, the exhaustive search is more than enough and in-
stantaneous. However, for a 105 precision, it is 10 times longer than
the genetic algorithm for the same results. The latter is then more
suitable for large datasets with many classes such as Audioset [6]
and its 632 classes.

3.2. Frame level probability curve smoothing

Frame level predictions are smoothed. It removes noise in the
probabilities, limiting the number of small segments or small gaps
created during the segmentation process. In our work, we use a
smoothed moving average. The smoothing of the temporal predic-
tion output by the model can be class dependent as the smoothing
window size may change with the class.

3.3. Segmenting

The parametric methods require optimization. They can either
be class independent or class dependent. We tested two of them
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Figure 4: Example of the dichotomic search of the best threshold
of a specific class. The same method is applied to the smoothing
window size

called i) class (in)dependent absolute (CIA CDA) and ii) class
(in)dependent hysteresis (CIH CDH).

(i) Absolute thresholding refers to directly applying a unique and
arbitrary threshold to the temporal predictions without using
their statistics. This naı̈ve approach still yields exploitable
results that can get close to the best ones in some cases. It is
also the approach with the shortest optimization time due to
the single parameter to optimize.

(ii) Hysteresis thresholding consists of two thresholds. One of
them is used to determine the onset of an event, and the second
one its offset. This algorithm is used when probabilities are
unstable and changing at a high pace. It should, therefore,
decrease the number of events detected by the algorithm and
reduce the insertion and deletion rates, giving a better error
rate than the Absolute threshold approach.

Optimization for localization

The segmentation methods presented exploit arbitrary parameters
to locate with precision sound events. The search for the best pa-
rameter combination is a meticulous work that is often difficult to
automatize. Indeed, depending on the number of parameters to tune,
the search space growth is exponential, and the execution time often
exceeds reasonable times. Consequently, we implemented a smarter
exploration method called dichotomic search, (Figure 4)

For every parameter to tune, the user provides global bound-
aries and, in between these boundaries, the algorithm tries every
combination with a coarse resolution and picks the one that yields
the best score. From this combination, new smaller boundaries are
computed. The complete process is then repeated in between the
new limits, with every step increasing the precision of each param-
eter and reducing the search space. It stops when the number of
steps given by the user is reached.

The dichotomous search algorithm, when compared to an ex-
haustive search of all the possible combinations, considerably re-
duces the time needed to reach a near optimal solution with excel-
lent accuracy. However, the execution time is still dependent on the
number of parameters to tune and the amount of iterations for every
step. The total number of combinations increases exponentially.

4. DATA

The methods are evaluated on a subset of the Google Audioset and
FreeSound [7] (FSD), provided within the task 4. All audio clips
are 10 second long and contain one or multiple sound events among
10 different classes, some overlapping with each other.

The training set consists of 1578 weakly annotated clips, an un-
labeled in domain subset of 14412 clips and a synthetic subset of
2045 clips, strongly annotated, created using Scaper and FSD. The
test set contains 1168 clips strongly annotated from human annota-
tors. For the training of the two first models, the weak and synthetic
subsets are used. With the third one, the unlabeled in domain subset
is also used for a self supervised task.

Each recording is converted to a mono signal with a sampling
rate of 22050 Hz. Log Mel filter banks are used as features. Each
recording is split into 431 frames by 64 mel bands. Data augmenta-
tion is performed on both the raw signals and the mel spectrograms.
Table 4 describes the different transformations used.

Transformation Model 1 Model 2 Model 3

Time stretch [0.9, 1.1] 3 3 3
Pitch shift [ 3, 3] 3 3 3
Level [0.8, 1.2] 3 3 3
Noise (normal 10 db) 3 3

Mirror: left / right 3
Mirror: up / down 3

Table 1: The different data augmentation transformations used for
each system. The first four are applied on the signal and the last two
on the mel spectrograms.

5. RESULTS

Table 2 shows the gains generated by the different segmentation
methods. The comparison is made using a fixed threshold of 0.5 for
all classes and no smoothing. Whereby, optimizing the segmenta-
tion process gives a significant performance increase. Table 3 shows
the detailed event and segment based class wise (Sb & Eb) macro
F-scores of the three systems presented above on the development
set 3. The best tagging and localization parameters were obtained
using the optimization steps described in the article. Best perfor-
mance was achieved using model 1 and CD hysteresis algorithm.

Model 1 Model 2 Model 3

No optimization 15.9% 21.5% 24.9%

CI Absolute threshold 29.1% 26.2% 27.8%
CD absolute threshold 36.9% 33.3% 31.8%
CD hysteresis 39.9% 33.8% 32.2%

Table 2: Impact of the three post processing methods on the event
based macro F score on the validation task 4 subset. Class indepen-
dent (CI) refers to parameters identical for each class. Two class
dependent (CD) refers to parameters different for each classes.
We submitted two systems to the challenge using CD hysteresis .
The submision names are:

• Model 1: PELLEGRINI IRIT task4 1
• Model 2: CANCES IRIT task4 2
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Baseline Model 1 Model 2 Model 3

Class Eb Sb Eb Sb Eb Sb Eb Sb

Alarm bell ringing 42.3% 76.5% 31.8% 71.3% 25.5% 74.2%
Blender - - 40.4% 57.9% 27.5% 45.3% 30.1% 52.9%
Cat - - 45.9% 57.8% 28.2% 52.9% 19.4% 54.4%
Dishes - - 26.6% 47.9% 21.6% 49.0% 24.7% 46.7%
Dog - - 17.8% 31.8% 19.3% 49.5% 13.4% 56.6%
Electric shaver toothbrush - - 48.5% 60.6% 52.3% 64.5% 49.1% 65.4%
Frying - - 35.5% 61.4% 47.9% 63.1% 44.3% 60.4%
Running water - - 30.7% 61.6% 17.3% 54.1% 18.5% 59.3%
Speech - - 39.9% 79.9% 40.0% 78.2% 44.9% 78.8%
Vacuum cleaner - - 68.7% 69.7% 51.8% 66.9% 52.1% 66.2%

Macro-F1 23.7% 55.2% 39.9% 60.5% 33.8% 59.5% 32.2% 61.5%

Table 3: F-scores for our three multi-task models on the validation Task 4 subset. Eb stands for Event-based and Sb for Segment-based
macro-F-scores.

6. CONCLUSION

In this work, we proposed three models for sound event detection.
Our methods were adapted to use different kinds of subsets, includ-
ing strong and weak annotations. We used a multi-task learning
approach to benefit from these mixed annotated data.
Moreover, we mainly focused our efforts on exploring optimiza-
tion methods to estimate the best performing thresholds to make
decisions on the detection and localization of sound events. We
introduced different optimization algorithms that drastically boost
model’s performance. Our best model performs localization and
audio tagging in a same single branch. It achieved a 39.9% event
based score on the DCASE 2019 task 4 validation dataset, on which
the baseline system yielded 23.7%. Without threshold optimization
for tagging nor for localization, the same model achieved a 15.9%
F-score.
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