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ABSTRACT

Sound event localization and detection (SELD) refers to the spatial
and temporal localization of sound events in addition to classification.
The Detection and Classification of Acoustic Scenes and Events
(DCASE) 2019 Task 3 introduces a strongly labelled dataset to
address this problem. In this report, a two-stage polyphonic sound
event detection and localization method. The method utilizes log
mel features for event detection, and uses intensity vector and GCC
features for localization. Intensity vector and GCC features use the
supplied Ambisonic and microphone array signals, respectively. This
method trains SED first, after which the learned feature layers are
transferred for direction of arrival (DOA) estimation. It then uses the
SED ground truth as a mask to train DOA estimation. Experimental
results show that the proposed method is able to localize and detect
overlapping sound events in different environments. It is also able
to improve the performance of both SED and DOA estimation, and
performs significantly better than the baseline method.

Index Terms— Sound event localization and detection,
direction of arrival, intensity vector, generalized cross correlation,
convolutional recurrent neural networks.

1. INTRODUCTION

Sound event detection is a rapidly developing research area that aims
to analyze and recognize a variety of sounds in urban and natural
environments. Compared to sound tagging, event detection also
involves estimating the time of occurrence of sounds. Automatic
recognition of sound events would have a major impact in a number
of applications [1]. For instance, sound indexing and sharing, bio-
acoustic scene analysis for animal ecology, smart home automatic
audio event recognition (baby cry detection, window break alarm),
and sound analysis in smart cities (security surveillance).

In real-world applications, a sound event is always transmitted in
a certain direction. Given this fact, it is reasonable to combine sound
event detection and localization by not only identifying the type and
temporal location of the sound but also estimating its spatial location.
Therefore, it is worthwhile to study them together and investigate
the effects and potential connections between them.

Task 3 of the DCASE 2019 challenge focuses on sound event
localization and detection (SELD) for overlapping sound sources [2].
A recently developed system known as SELDnet was used as the
baseline system. SELDnet uses magnitude and phase spectrograms
as input features and trains the SED and DOA estimation objectives
jointly [3]. Besides spectrograms, generalized cross-correlation

* Equal contribution.

(GCC) based features have also been used as input features [4–8]
to solve sound event localization, which can effectively supply time
difference information.

In this report, log mel features have been used for SED, while
a type of intensity vector in log mel space and generalized cross-
correlation features have been used for DOA estimation. A novel
two-stage method for polyphonic sound event detection and local-
ization is used [9]. This method trains sound event detection and
localization in two stages: the SED stage and the DOA estimation
stage, corresponding to the SED branch and the DOA estimation
branch in the model, respectively. During training, the SED branch
is trained first only for SED, after which the learned feature layers
are transferred to the DOA estimation branch. The DOA estimation
branch fine-tunes the transferred feature layers and uses the SED
ground truth as a mask to learn only DOA estimation. During infer-
ence, the SED branch estimates the SED predictions first, which are
used as the mask for the DOA estimation branch to infer predictions.
The experimental results show that by using the proposed method,
DOA estimation can benefit from the SED predictions; both SED and
DOA estimation can be improved at the same time. The proposed
method performs significantly better than the baseline method.

The rest of the report is organized as follows. In Section 2,
the proposed learning method is described in detail, including fea-
tures used, network architecture, ensemble method used and hyper-
parameters. Development results are shown in Section 3. Finally,
conclusions are summarized in Section 4.

2. THE METHOD

In this report, a two-stage polyphonic sound event detection and
localization network using log mel space intensity vector and gener-
alized cross-correlation features is utilized for Task 3. The source
code is released on GitHub 12.

2.1. Features

Task 3 provides two types of input data format: First-Order of Am-
bisonics (FOA) and tetrahedral microphone array [2]. In this report,
a log mel feature is first used for SED, while an intensity vector
in log mel space and a GCC with phase transform (GCC-PHAT)
features are used for DOA estimation. The log mel space intensity
vector utilizes FOA input data, whereas the GCC-PHAT utilizes the

1https://github.com/yinkalario/DCASE2019-TASK3
2https://github.com/yinkalario/Two-Stage-Polyphonic-Sound-Event-

Detection-and-Localization
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Figure 1: The diagram of the proposed two-stage sound event detection and localization network. SED ground truth is used as the mask to train
DOA estimation branch. SED predictions are used as the mask to infer DOA.

microphone array input data. The detailed features are described in
the following sections.

2.1.1. Intensity vector

FOA, which is also known as B-format, includes four channels of
signals, w, x, y and z. These four channel signals indicates omni-
directional, x-directional, y-directional and z-directional compo-
nents, respectively. The instantaneous sound intensity vector can
be expressed as I = pv, where p is the sound pressure and can be
obtained with w, v = (vx,vy,vz)

T is the particle velocity vector
and can be estimated using x, y and z. Intensity vector carries the
information of the acoustical energy direction of a sound wave, its in-
verse direction can be interpreted as the DOA, hence the FOA based
intensity vector can be directly utilized for DOA estimation [10].

In order to concatenate the log mel and the intensity vector
features to input to the the proposed neural network, the intensity
vector is also calculated in the STFT domain and the mel space as

I(f, t) =
1

ρ0c
<

W∗(f, t) ·

 X(f, t)
Y(f, t)
Z(f, t)

 , (1)

Inorm,mel(k, t) = −Hmel(k, f)
I(f, t)

‖I(f, t)‖ , (2)

where, ρ0 and c are the density and velocity of the sound, W,X,Y,Z
are the STFT of w, x, y, z, respectively, <{·} indicates the real part,
∗ denotes the conjugate, ‖ · ‖ is a vector’s `2 norm, k is the index of
the mel bins, Hmel is the mel-band filter banks. In this report, the
three components of the intensity vector are taken as three additional
input channels for the neural network.

2.1.2. Generalized Cross-Correlation

GCC is based on microphone array signals, and is widely used in time
difference of arrival (TDOA) estimation by means of maximizing
the cross-correlation function to obtain the lag time between two
microphones. The cross-correlation function is calculated through
the inverse-FFT of the cross power spectrum. GCC-PHAT is the

phase-transformed version of GCC, which whitens the cross power
spectrum to eliminate the influence of the amplitude, leaving only
the phase. GCC-PHAT can be expressed as

GCCij(t, τ) = F−1
f→τ

Xi(f, t) ·X∗j (f, t)

|Xi(f, t)‖Xj(f, t)|
, (3)

where F−1
f→τ is the inverse-FFT from f to τ , Xi(f, t) is the Short-

Time Fourier Transform (STFT) of the i-th microphone signal.
GCCij(t, τ) can also be deemed as a GCC spectrogram, with τ cor-
responding to the number of mel-band filters. That is, GCC-PHAT
can be stacked with a log mel spectrogram as the input features. In or-
der to determine the size of GCC-PHAT, the largest distance between
two microphones, dmax, needs to be used. The maximum delayed
samples corresponding to ∆τmax can be estimated by dmax/c · fs,
where c is the sound speed and fs is the sample rate. In this paper,
log mel and GCC-PHAT will be stacked as the input features, con-
sidering the possibility of the advance and the delay of GCC. The
number of mel-bands, therefore, should be no smaller than double
the number of delayed samples plus one [11].

2.2. Network architecture

The network is shown in Fig. 1, and has two branches, the SED
branch and the DOA estimation branch. During training, the ex-
tracted features, which have shape C × T × F , are first sent to the
SED branch. C indicates the number of feature maps, T is the size
of time bins, and F is the number of mel-band filters or delayed sam-
ples of GCC-PHAT. The CNN layers, which are also called feature
layers in this report, are constructed with 4 groups of 2D CNN layers
(Convs) with 2× 2 average-pooling after each of them. Each Convs’
group consists of two 2D Convs, with a receptive field of 3× 3, a
stride of 1× 1, and a padding size of 1× 1 [12]. Each single CNN
layer is followed by a batch normalization layer [13] and a ReLU
activation. After the CNN layers, the data is then sent to a global
average-pooling layer to reduce the dimension of F followed by a
bidirectional GRU. The output size is maintained and is sent to a
fully-connected layer with an output size of K, which is the number
of event classes. The sigmoid activation function is used afterwards
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with an upsampling in the temporal dimension to ensure the output
size is consistent with T . The SED predictions can now be obtained
through an activation threshold. Binary cross-entropy is used for this
multi-label classification task.

The DOA estimation branch is then trained. The CNN layers are
transferred from the SED branch and are fine-tuned. The output of
the fully-connected layer for the DOA estimation branch is a vector
of K × 2 linear values, which are azimuth and elevation angles for
K events. They are then masked by the SED ground truth during
training to determine if the corresponding angles are currently active.
Finally, the mean absolute error is chosen as the DOA estimation
regression loss.

During inference, the SED branch will first compute the SED
predictions, which are then used as the SED mask to obtain the DOA
estimation. For more detailed descriptions, readers can refer to [9].

2.3. Ensemble method

After training the proposed models, ensemble averaging was used
to combine the predictions of these models. Let y1, ...,yM be the
predictions of theM models for some instance x, where yi ∈ Y , and
Y is some prediction space. An ensemble function, f : YM → Y ,
computes a new prediction as a function of y1, ...,yM . A simple
example is the mean ensemble function, defined as the mean of
the predictions. Although the mean ensemble is effective, other
functions can exploit the different characteristics of the models.

Stacking [14] is an ensemble method in which the function f is
learned using a machine learning algorithm. This allows exploiting
the characteristics of the models, such as class-wise performance, in
a data-driven manner. In our system, a neural network was used to
model f , with the concatenation of the predictions, [y1, ...,yM ], as
the input. Two types of inputs were investigated. Since the models
output a prediction for each time bin, one could let yi correspond to
such a prediction, i.e. Y := RK . However, this means that temporal
relations are discarded. Instead, one could let yi correspond to
several of these predictions, i.e. Y := RB×K , where B is the
number of time bins to consider jointly. In the experiments, this
was found to improve the performance. As such, it is the approach
used in the proposed system, which means the input of the network
is a B ×KM matrix. To train the network, the predictions of the
training set were used by adopting the cross-validation setup.

The neural network used is a convolutional recurrent neural
network with three layers. It is a 1D convolutional layer followed
by batch normalization, a bidirectional GRU layer, and a final fully-
connected layer with a sigmoid activation. The convolutional layer
takes the input to be a sequence of length B with KM channels,
and outputs a sequence of length B with 128 channels. The kernel
size of the convolution is 7. The bidirectional GRU layer outputs
64 channels in each direction so that the total number of channels is
also 128. Finally, the fully-connected layer takes each 1× 128 slice
and outputs a vector of length K. Concatenating these K-vectors
gives the desired prediction with shape B ×K.

The stacking and mean ensemble methods are implemented for
SED and DOA estimation, respectively. Stacking is first used to
improve the performance of SED, and its output is binarized with
a threshold later to form the SED mask for DOA inference. Mean
ensemble is then used for the DOA predictions.

2.4. Hyper-parameters

To extract the input features, the sample rate of the STFT is set
to 32 kHz. A 1024-point Hanning window with a hop size of 320

points is utilized. The number of mel-band filters and the delays of
GCC-PHAT is set to 128. For 4 channels of FOA and microphone
array signals, there are 8 channels of log mel features from FOA
and microphone array signals in total, 3 channels of intensity vector
features, and 6 channels of GCC-PHAT features, hence up to 17
input channels of signals are sent to the network. The audio clips are
segmented to have a fixed length of 5 seconds with a 50 % overlap
for training. The learning rate is set to 0.001 for the first 40 epochs
and is then decayed by 10 % after each epoch that follows. The final
results are calculated after 80 epochs. A threshold of 0.5 is used to
binarize the SED predictions.

3. DEVELOPMENT RESULTS

Polyphonic sound event detection and localization were evaluated
with individual metrics for SED and DOA estimation. For SED,
segment-based error rate (ER) and F-score [15] were calculated in
one-second lengths. A lower ER or a higher F-score indicates better
performance. For DOAE, DOA error and frame recall were used. A
lower DOA error and a higher frame recall are better.

Using the cross-validation split provided for this task, Table 1
shows the development set performance for the proposed method.
As shown in the table, the performance of the proposed method
outperforms the two baseline methods for both sound event detection
and DOA estimation by a large margin.

Table 1: Cross-validation results for the development set.
Error rate F score DOA error Frame recall

baseline-Ambisonic 0.34 0.799 28.5◦ 0.854
baseline-Microphone array 0.35 0.800 30.8◦ 0.840
Two-Stage 0.13 0.930 6.61◦ 0.894

4. CONCLUSION

The goal of the DCASE 2019 Task 3 is to recognize and localize
sound events by determining their onset and offset times as well as
their direction of arrival. In this report, a two-stage polyphonic sound
event localization and detection method was proposed. The method
uses log mel features for SED, and uses intensity vector in mel space
and GCC-PHAT features for DOA estimation. The experimental
results for the development dataset show that the proposed method
outperforms the baseline methods by a significant margin.
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