
Detection and Classification of Acoustic Scenes and Events 2019 Challenge

CONVOLUTIONAL RECURRENT NEURAL NETWORK AND DATA AUGMENTATION FOR
AUDIO TAGGING WITH NOISY LABELS AND MINIMAL SUPERVISION

Technical Report

Janek Ebbers∗, Reinhold Haeb-Umbach

Paderborn University, Department of Communications Engineering, Paderborn, Germany
{ebbers, haeb}@nt.upb.de

ABSTRACT

This report presents our Audio Tagging system for the DCASE
2019 Challenge Task 2. Our proposed neural network architecture
consists of a convolutional front end using log-mel-energies as input
features, a recurrent neural network sequence encoder outputting a
single vector for a whole sequence and finally a fully connected
classifier network outputting an activity probability for each of the
80 event classes. Due to the limited amount of available data we
use various data augmentation techniques to prevent overfitting and
improve generalization. Our best system achieves a label-weighted
label-ranking average precision (lwlrap) of 73.0% on the public test
set which is an absolute improvement of 19.3% over the baseline.

Index Terms— audio tagging, label noise, data augmentation

1. MODEL

The model is outlined in Tab. 1.

1.1. Feature Extraction

First, we perform an STFT with a frame length of 40ms (1764 sam-
ples) and a hop size of 20ms (882) on the provided 44.1 kHz audio
signals without resampling. For each frame we then extract 128
log-mel-band-energy features with fmin=50Hz and fmax=16kHz.
Lastly, we substract the global mean of each feature and then divide
by the remaining global standard deviation over all features.

1.2. Neural Network Architecture

It consists of a convolutional (conv.), a recurrent and a fully con-
nected module. We expect a four dimensional input to our model
of shape B×C×F×N with B,C, F,N being the mini-batch size,
number of channels, number of features and number of frames, re-
spectively, where C=1 and F=128 are fix.

The convolutional module combines a 2d CNN and a 1d CNN.
The 2d CNN consists of five conv. blocks, with each block com-
prising one or two conv. layers and a max pooling layer. While
the first four blocks have two conv. layers the last block only has
a single one. In each block the number of channels are doubled
starting from 16 while the number of features are halfed by max
pooling. The number of time steps are also halfed in the first three
blocks while being unchanged in the last two blocks. This results

∗This work has been supported by Deutsche Forschungsgemeinschaft
under contract no. HA 3455/15-1 within the Research Unit FOR 2457
(acousticsensor networks).

Table 1: Convolutional Recurrent Neural Network for Audio Tag-
ging with output shapes of each block. For simplicity we write
dN/4e instead of ddN/2e/2e. Each ConvXd uses a kernel size
of three and a stride of one and includes BatchNorm and ReLU.

Block output shape
LogMel(128) B×1×128×N
GlobalNorm B×1×128×N

2×Conv2d(16) B×16×128×N
Pool2d(2×2) B×16×64×dN/2e

2×Conv2d(32) B×32×64×dN/2e
Pool2d(2×2) B×32×32×dN/4e

2×Conv2d(64) B×64×32×dN/4e
Pool2d(2×2) B×64×16×dN/8e

2×Conv2d(128) B×128×16×dN/8e
Pool2d(2×1) B×128×8×dN/8e
Conv2d(256) B×256×8×dN/8e
Pool2d(2×1) B×256×4×dN/8e

Reshape B×1024×dN/8e
3×Conv1d(256) B×256×dN/8e

2×GRU(256) B×256
fcReLU(256) B×256
fcSigmoid(80) B×80

in an output of shape B×C′×F ′×N ′ with C′=256, F ′=4 and
N ′ =

⌈
N
8

⌉
. Each 2d conv. layer uses a kernel size of 3×3 and is

followed by batch normalization and ReLU activation.

While the 2d CNN is meant to extract high-level feature
maps from the log-mel-band-energy spectrogram, the 1d CNN (or
TDNN) is meant to provide holistic representations by jointly pro-
cessing all frequencies and channels of adjacent frames. Therefore
it takes the reshaped output (B × C′·F ′ × N ′) of the 2d CNN as
input and applies three 1d conv. layers with 256 hidden channels
each. Each 1d conv. layer uses a kernel size of 3 and is followed by
batch normalization and ReLU activation.

The output of the CNN is then fed into a recurrent sequence
encoder. We use two layers of Gated Recurrent Units (GRUs) with
256 units per layer. Only the last output vector of each sequence in
a batch is forwarded to the classification network.

The fully connected classification network conists of one hid-
den layer with 256 hidden units and ReLU activation function
and the final classification layer with Sigmoid activation outputting
scores between 0 and 1 for each of the 80 target event classes.

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

2. DATA AUGMENTATION

Because there is only little data available, an efficient data augmen-
tation is crucial to prevent overfitting and improve generalization
of the system. In the following we outline the data augmentation
methods that we combined during model training. All of them have
shown to improve model performance evaluated on a held out vali-
dation set.

2.1. Mixup

Mixup [1] is a data augmentation technique originating from clas-
sification tasks where a new training sample is generated as a
weighted average of two samples from the dataset:

x̃i = λxi + (1− λ)xj .

Similarly their one-hot encoded targets are combined to a soft target
vector:

ỹi = λyi + (1− λ)yj .

Although for classification tasks mixup results in ambiguous sam-
ples (which probably wouldn’t make a lot of sense to a human ei-
ther) it has shown to improve generalization and robustness of the
trained classifier networks. Mixup has successfully been used for
Gerneral purpose audio tagging, e.g. in [2], in the DCASE 2018
Challenge [3].

For audio tagging (as opposed to classification) the input audio
may already be a superposition of multiple sources. Thus, mixing
two or more audio signals together yields a new valid audio signal
with an increased number of active events. Therefore, instead of
building a weighted average we superpose two waveforms as fol-
lows:

x̃i(t) = λ0xi(t) + γλ1
max(|xi|)
max(|xj |)

xj(t− τ)

with

γ ∼ B(2/3),
τ ∼ U(max(−Tj , Ti − 30 s),min(Ti, 30 s− Tj)),

Tj ≤ 1.1 · Ti,

λm = a2bm−1
m ; am ∼ U(1, 2); bm ∼ B(1/2); m∈{0, 1}

where B denotes the Bernoulli distribution. Putting this equations
into words we

• perform mixup only with a probability of 2/3,
• only mixup signals which are shorter than 1.1 times the base

signal xi,
• allow mixup to lengthen the signal as long as it does not exceed

the maximum length of 30 s,
• normalize signals to the maximum value of the base signal xi,
• attenuate or amplify each normalized signal by a random factor

between one and two.

We also do not build a weighted average of the individual tar-
gets, but simply combine all tags into a single n-hot encoded target
ỹi.

2.2. Frequency Warping

Recently, SpecAugment [4] was introduced as a simple yet effi-
cient augmentation method of log-mel spectrograms for automatic
speech recognition. It uses three different distortions namely time
warping, frequency masking, and time masking. In our experi-
ments, however, we found that for audio tagging warping the spec-
trogram on the frequency axis yielded better performance than time
warping. Hence, we exchange the time warping by frequency warp-
ing in our version of SpecAugment which is explained in this and
the following two sections.

We consider the log-mel spectrogram as an image here with
width T and height F . Warping the vertical (frequency) axis of the
image is controlled by the cutoff frequency

fc ∼ E(0.5 · F),

where E denotes the exponential distribution parameterized by the
scale β = 0.5 · F , and by the warping factor

α = (1 + u)2s−1; u ∼ E(0.07); s ∼ B(1/2).

Fig. 1 shows the resulting piece-wise linear warping function. Note
that fc can be larger thanF , which results in stretching/compressing
the whole spectrogram.

It is worth noting that the frequency warping performed here is
very similar to Vocal Tract Length Pertubation [5].

forig

fscaled

fc F

α

Figure 1: piece-wise linear frequency warping function.

2.3. Frequency Masking

We randomly mask H consecutive mel frequencies in the range
[f0, f0+H], whereH and f0 are drawn from uniform distributions

H ∼ U(0, Hmax)

f0 ∼ U(0, F −H)

with Hmax = 16.

2.4. Time Masking

We randomly mask W consecutive frames in the range [n0, n0 +
W], where W and n0 are drawn from uniform distributions

W ∼ U(0,min(Wmax, p ·N))

n0 ∼ U(0, T −W)

with Wmax = 70 and p = 0.2.

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

3. TRAINING

3.1. Data

For taining we use both the data with curated labels as well as the
data with noisy labels. Recognizing that the train portion with noisy
labels primarily contains audio signals of length 15 s, we randomly
split the audio signals into two at length rn · Tn with Tn being the
length of the n-th signal and rn ∼ U(0.1, 0.9). This results in au-
dio excerpt lengths which are approximately uniformly distributed
between 1 s and 13.5 s. As mixup data augmentation may lengthen
audio signals, mixup of the noisy excerpts yields signals distributed
between 1 s and 27 s. Each audio-excerpt copies the event tags of
the original audio, which results in some additional label noise.

We mixup curated only data which we refer to as the curated
portion in the following as well as we mixup combined curated and
noisy data which we refer to as the noisy portion in the following.
To prevent training from being dominated by noisy labels, we iterate
the curated portion R times as often as the noisy portion.

3.2. Optimization

The training criterion is the binary cross entropy between the model
predictions ŷ and the n-hot target vector ỹ:

L(ŷ, ỹ) = −
K−1∑
k=0

(
ỹk log(ŷk) + (1− ỹk) log(1− ŷk)

)
with K = 80 denoting the number of target event classes.

We randomly sample mini batches of size 16 from the training
data such that

1. no signal in the mini batch is padded by more than 20%,

2. no example in the mini batch includes the same events as
another example in the same minibatch,

and compute gradients of the average loss in the mini batch. We clip
gradients at a threshold of 15. Adam [6] was used for optimization.
Training is performed for 150K iterations with a learning rate of
3 · 10−4 followed by 50K iterations with a learning rate of 10−4.

We perform Stochastic Weight Averaging (SWA) [7] for the last
50K iterations with a frequency of 1K iterations. At the end of
training we exchange the model weights for the averaged weights.
Finally we update the statistics of all batch normalization layers by
making a forward pass on our (unaugmented) training data using the
SWA model. SWA has shown to improve generalization and hence
performance on unseen data. Another advantage is that with SWA
there is no need for held-out data to determine the best performing
checkpoint.

4. EXPERIMENTS

The random splitting of the noisy examples, presented in Sec. 3.1,
was independently performed three times resulting in three different
datasets which we refer to as splits in the following.

4.1. Relabeling

For each of the three splits we train a model on five different folds
using the provided noisy labels with R = 8 (this was chosen such
that the curated portion makes more than 50% of the training). This
results in a total of 15 different models which were all combined
into an ensemble to make predictions for the noisy excerpts from

all three splits. Here the event scores of the individual models were
averaged to obtain the ensemble output scores.

For each event we then determined the decision threshold yield-
ing the best error rate jointly evaluated on the set of all noisy ex-
cerpts from all splits. These decision thresholds were used to re-
label the noisy excerpts, where excerpts without any active event
were discarded.

4.2. Results

On each relabeled split we trained a new model for a certain value
of R using the whole dataset for training (we do not need held-out
data to determine the best checkpoint as we use SWA).

Tab. 2 presents performance of our submitted systems. Model
performance is evaluated in terms of label-weighted label-ranking
average precision (lwlrap) [8]. The marked single model system is
submitted as our candidate for the judges award. Combining mul-
tiple models (trained on different splits) into ensembles, however,
significantly improves performance. The best performing system
presented in the last row combines all submodels from the systems
presented in the previous two rows into a single ensemble.

Table 2: Performance of different (ensemble) systems. Cor-
responding filenames of submitted systems are given as
Ebbers_UPB_task2_<FileIdx>.output.csv.

#models R FileIdx
Judges

lwlrap
Candidate

Baseline 0.537
1 4 3 3 0.707
3 4 2 0.726
3 2 N/A 0.719
6 2;4 1 0.730

5. CONCLUSIONS

In this report we presented our system for the DCASE 2019 Chal-
lenge Task 2. We suggested a convolutional recurrent neural net-
work architecture operating on log-mel spectrogram features. We
put our main focus, however, on efficient data augmentation. We
adjusted and combined the recently proposed mixup data augmen-
tation and SpecAugment resulting in a high performance improve-
ment compared to the baseline. We also presented a scheme to
randomly split noisy labeled data to create differing datasets. We
showed that ensembling models trained on these different datasets
further improved performance.

6. REFERENCES

[1] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[2] I.-Y. Jeong and H. Lim, “Audio tagging system using densely
connected convolutional networks.”

[3] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory,
J. Pons, and X. Serra, “General-purpose tagging of freesound
audio with audioset labels: Task description, dataset,
and baseline,” CoRR, vol. abs/1807.09902, 2018. [Online].
Available: http://arxiv.org/abs/1807.09902

Detection and Classification of Acoustic Scenes and Events 2019 Challenge

[4] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmenta-
tion method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

[5] N. Jaitly and G. E. Hinton, “Vocal tract length perturbation
(vtlp) improves speech recognition,” in Proc. ICML Workshop
on Deep Learning for Audio, Speech and Language, vol. 117,
2013.

[6] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[7] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G.
Wilson, “Averaging weights leads to wider optima and better
generalization,” arXiv preprint arXiv:1803.05407, 2018.

[8] E. Fonseca, M. Plakal, F. Font, D. P. Ellis, and X. Serra, “Au-
dio tagging with noisy labels and minimal supervision,” arXiv
preprint arXiv:1906.02975, 2019.

