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ABSTRACT

A system for the automatic classification of acoustic scenesis
proposed that uses the stereophonic signal captured by a binau-
ral microphone. This system uses one channel for calculating the
spectral distribution of energy across auditory-relevantfrequency
bands. It further obtains some descriptors of the envelope modula-
tion spectrum (EMS) by applying the discrete cosine transform to
the logarithm of the EMS. The availability of the two-channel bi-
naural recordings is used for representing the spatial distribution of
acoustic sources by means of position-pitch maps. These maps are
further parametrized using the two-dimensional Fourier transform.
These three types of features (energy spectrum, EMS and position-
pitch maps) are used as inputs for a standard Gaussian Mixture Mo-
del with 64 components.

Index Terms— Acoustic scene classification, modulation
spectrum, position-pitch map, Gaussian Mixture Models

1. INTRODUCTION

This submission consists of a system for the classification of acou-
stic scenes based on a combination of features obtained fromthe
envelope modulation spectrum (EMS) [1] calculated using a gam-
matone filter-bank [2], and from the position-pitch plane obtained
after the cross-correlation function of the left and right channels [3].
The EMS is calculated from both audio channels. These features are
used as inputs for a standard Gaussian mixture model (GMM) with
64 Gaussian components[4].

2. MATERIALS

Audio recordings correspond to the TUT Urban Acoustic Scenes
2018 dataset [5]. This dataset consists of recordings captured at
distinct locations and split into 10-second segments. The duration
of recordings ranged from 5 to 6 min. A Zoom F8 multitrack re-
corder and a Soundman OKM II Klassik/studio A3 binaural mi-
crophone were used for recording, hence producing a stereophonic
signal. The microphone response can be considered flat between
20 Hz and 20 kHz. Recordings were captured with sampling rate
equal to 48 kHz and 24 quantization bits. Each recording location
corresponded to one of the classes listed in Tab. 1.

# Class name
1 Airport
2 Indoor shopping mall
3 Underground station
4 Pedestrian street
5 Public square
6 Street with medium level of traffic
7 Travelling by tram
8 Travelling by bus
9 Travelling by underground
10 Urban park

Table 1: Classes of acoustic scenes: 3 vehicle, 4 indoor, 3 outdoor.

3. SIGNAL ANALYSIS

The two audio channels comprising each recoding were first prepro-
cessed to remove their mean values. Their combined mean square
value was subsequently normalised. Normalisation was performed
by the same factor in both channels so as to preserve their level
differences, that is, the root mean square value of all samples inclu-
ded in both channels was computed for normalisation. Afterwards,
each channel was split in frames with duration 1.5 seconds, and
50% overlap between consecutive frames.

Each frame in the both left and right channels was processed
by a filter-bank consisting of 40 gammatone filters [2] with central
frequencies ranging from 27.5 Hz to 17.09 kHz. The central fre-
quencies of the filter-bank were chosen so that the pass-bands of
contiguous filters were adjacent but not overlapping, i.e. the upper
cut-off frequency of one filter was the same as the lower cut-off fre-
quency of the next. Figure 1 illustrates the frequency responses for
the first filters.

In CASA systems, the filter-bank modelling the cochlear fre-
quency behaviour is followed by a non-linear model of neuromecha-
nical transduction [6]. This non-linear system approximately per-
forms compression of the higher signal peaks and half-wave rectifi-
cation [7]. As this produces a too detailed set of signals, itis usual
to apply low-pass filtering and decimation afterwards [8]. The im-
plementation of this model is computationally expensive due to its
non-linearities. For this reason, we substitute it by full-wave rectifi-
cation followed by a 5th order Butterworth low-pass filter with cut-
off frequency equal to 80 Hz and decimation to yield a sampling
frequency equal to 200 Hz.

Each resulting frame is further processed by computing its dis-
crete Fourier transform (DFT). The EMS [1] is obtained by stacking
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Figure 1: Frequency responses of the filters in the filter-bank with
central frequencies up to 3.5 kHz (25 filters).

the square modulus of the DFT corresponding to the 40 gammatone
filters. In order to reduce the dimensionality of the EMS, itscom-
ponents corresponding to the fastest variations of the signal were
discarded. Specifically, a threshold of 24 Hz was set for the modu-
lation frequency. Therefore, each signal frame was represented by
a matrix, i.e. EMS, of 40×9 elements. The first data column repre-
sents the average energy at the output of each gammatone filter, i.e.
the long-term average spectrum (LTAS) of the audio frame. The re-
maining 8 columns represent the energies of amplitude modulations
between 0 and 3 Hz, between 3 and 6 Hz, etc.

The signal analysis scheme described so far transforms one
channel of the audio recorded during 1.5 seconds into a feature vec-
tor of 40×9 = 360 components. The dimensionality of this feature
space was reduced as follows. As stated before, the first column in
the EMS corresponds to the average energy at each frequency band.
This is relevant for discriminating among certain types of acoustic
events [9], so the corresponding 40 values for each EMS were kept
unchanged. Only a logarithm operation was applied in order to re-
duce the skewness of their distribution. Similarly to the approach
in [10], the remaining 8 columns of each EMS were processed asif
they were a grey-scale image. Specifically, the two-dimensional dis-
crete cosine transform (DCT) [11] of the logarithm of the EMSwas
calculated, and the block corresponding to the first8×8 DCT coef-
ficients was chosen as a lower-dimensional representation of each
40 × 8 EMS. Therefore, after this dimensionality reduction, each
audio frame of duration 1.5 s was represented by a feature vector
with (40 + 64) · 2 = 104 components.

The spatial information provided by the 2-channel recordings
was represented by generating the position-pitch mapρ (ϕ, f) defi-
ned as [3]:

ρ (ϕ, f) =
1

2K + 1

K
∑

k=−k

Rlr

(

k
fs

f
+

d · fs

c
cosϕ

)

(1)

whereϕ (azimut - rad) andf (frequency - Hz) are the indepen-
dent variables of the map,Rlr (τ ) is the estimated cross-correlation
between left and right channels at time lagτ , fs is the sampling fre-
quency (48 kHz),d is the interaural distance (estimated to be 21 cm
for this experiment),c is the phase speed of sound (estimated to be
343 m/s for this experiment), andK is the largest possible integer
given the maximum time lagτ for whichRlr (τ ) has been estimated
(τ < 1.5 s in our case).

The position-pitch map was calculated for each 15 s audio
frame for−π < ϕ ≤ π with a resolution of π

180
rad, and for

20 < f ≤ 2 000 with a resolution of1 Hz. This produced a
181×1981 map with shifts in theϕ dependent on the orientation of
the head-mounted microphone system. In order to reduce the num-
ber of dimensions, a bidimensional discrete Fourier transform (2D
DFT) was calculated, and only the4 × 4 elements corresponding
to the lowest spatial frequencies were taken as input features for the
acoustic scene classifier. Furthermore, in order to make theparame-
ters orientation-independent, only the modulus of the 2D DFT was
considered.

4. CLASSIFICATION

The afore-mentioned feature vectors were used as inputs forten
GMMs with 64 components [4] each. Each GMM modelled the
likelihood of one of the scene classes given the feature vector com-
posed by the EMS and the position-pitch features, and correspon-
ding to one 1.5 s. The overalla posterioriprobability of each class
for a 10 s audio segment was estimated by adding up the logarithms
of the likelihoods of its frames, assuming that alla priori probabi-
lities are equal. For all frames, segments and recordings, the class
assigned by the system was estimated to be the class yieldingthe
highest of thesea posteriorilog-probabilities.

5. EXPERIMENTS & RESULTS

The classification experiment corresponding to the baseline evalu-
ation procedure proposed for the acoustic scene classification chal-
lenge in DCASE 2019[5] was run. The overall correct classification
rate (CCR) for audio segments is 53.86%, while the per-classper-
formance is as indicated in table The confusion matrix correspon-
ding to this experiment is in Tab. 2.

6. CONCLUSIONS

This paper presents a system for the automatic classification of
acoustic scenes based on the EMS and position-picth maps. The
proposed system exploits the availability of two channels in the ste-
reophonic recordings by building a representation of the spatial dis-
tribution of sound sources from the cross correlation between the
binaural signals. Features from both types of analysis are subse-
quently combined to build a feature vector for each audio frame.

The signal analysis scheme was designed taking into account
several issues. The first stages of the system are a simplification of
the peripheral auditory system [8]. The specific responses of the
gammatone filters were chosen so that the filter-bank fully covered
the pass-band of the microphone. The average energy at the out-
put of each filter was kept as a feature, hence accounting for the
relevance of the energy spectrum for acoustic event detection [9].
Slow modulations of these energies were described by reducing the
dimensionality of the EMS using the DCT, a common-use tool for
data compression in image processing [11]. In turn, the dimensiona-
lity of position-pitch maps was reduced by calculating the 2D DFT,
and the parametrization scheme was made orientation-invariant by
taking only the modulus of such 2D DFT.
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