
Detection and Classification of Acoustic Scenes and Events 2019 Challenge

VGG CNN FOR URBAN SOUND TAGGING
Technical Report

Clément Gousseau

Royal Institute of Technology (Stockholm, Sweden) and Orange Labs (Lannion, France)
clement.gousseau@gmail.com

ABSTRACT

A model of urban sound tagging is presented (Task 5 of DCASE
2019 [1][2]). The task is to detect activities from 10-seconds au-
dio segments recorded in the streets of New York City (SONYC
dataset). The model is based on the model presented in the book
Hands-On Transfer Learning with Python [3] which does urban
sound classification for the UrbanSound dataset. This model has
been adapted and optimized to address the task 5 of DCASE2019.
It achieved a AUPRC of 82.6 for the coarse-grained model where
the baseline achieves an AUPRC of 76.2.

1. INTRODUCTION

The development dataset [2] is composed of 2351 recordings in the
training dataset and 443 recordings in the validation dataset. Each
recording is a 10-seconds audio segment recorded in the streets of
New York City. For the training set, each recording has been anno-
tated by three volunteers on Zooniverse, a web platform for citizen
science. For the validation set, each recording has been annotated
by the organizers of the DCASE Challenge. The annotations follow
a fined-grained or a coarse-grained taxonomy (see figure 1).

Figure 1: DCASE Task 5 Taxonomy [1]

Labels are non-exclusive: several (or none) classes can be present
in each recording. For each recording, the goal is to output a prob-
ability of presence for each class. The performance of the model
is measured using micro-averaged AUPRC (Area Under Precision
Recall Curve [4]).

2. PROPOSED MODELS

2.1. Features

The feature engineering uses the method presented in the book
Hands-On Transfer Learning with Python. First the recordings are
re-sampled using a sampling rate of 22050Hz. Then three features
are extracted from these signals:

• The mel-spectrograms using 64 mel-bands and a hop length of
512 thus resulting a 64 rows x 431 columns image.

• The averaged value of the harmonic and percussive compo-
nents (64 rows x 431 columns image).

• The derivative of the log-mel spectrograms (64 rows x 431
columns image).

These spectrograms have been extracted using the librosa library
[5]. The figure below represents the three spectrograms extracted
from an alert-signal recording.

Figure 2: The three input images corresponding to a recording



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

2.2. Model structure

A VGG-style [6] convolutional neural network is used to detect the
classes from the input spectrograms:

Input 64 x 431 x 3
64 x conv 3x3
64 x conv 3x3
MaxPooling 2x2
128 x conv 3x3
128 x conv 3x3
MaxPooling 2x2
256 x conv 3x3
256 x conv 3x3
256 x conv 3x3
MaxPooling 2x2
512 x conv 3x3
512 x conv 3x3
512 x conv 3x3
MaxPooling 2x2
512 x conv 3x3
512 x conv 3x3
512 x conv 3x3
MaxPooling 2x2
Flatten
1024-Fully Connected + L2-regularization
ReLu Activation
Dropout
1024-Fully Connected + L2-regularization
ReLu Activation
Dropout
512-Fully Connected + L2-regularization
ReLu Activation
Dropout
512-Fully Connected + L2-regularization
ReLu Activation
Dropout
n classes-Fully Connected + L2-regularization
Sigmoid Activation

All convolutional layers are initialized with the weights of VGG16
pre-trained on Imagenet dataset [7] but they remain unfrozen
during the training.

This model has 30,188,360 parameters.

n classes depends on the targets (fine-grained or coarse-grained
labels).

The model was implemented using Keras. The code is available at
https://github.com/cgousseau/dcase_task5.

2.3. Data augmentation

The training set is quite small (2351 samples). Data augmentation
is a way to artificially increase the size of the training set and avoid
overfitting. Mixup is a data augmentation method that has been ex-
perimented for this task. From two samples {input : x1, target :
y1} and {input : x2, target : y2} a ’new’ sample is created:
{input : x3 = λx1 +(1−λ)x2, target : y3 = λy1 +(1−λ)y2}
where λ ∼ β(mixup rate) [8].

2.4. Model optimization

Hyperparameter tuning is an important but tricky part of machine
learning problems. For this task, Particle Swarm Optimization [9]
has been used to optimize some hyperparameters of the network.
These hyperparameters are: dropout rate, L2-regularization con-
stant, batch size, mixup rate.

Particle Swarm Optimization is a population-based optimiza-
tion method, it was inspired from animal social groups like herds,
schools and flocks. The swarm is composed of n particles which
have a position in the d-dimensions hyperparameter search space.
Particles move in the search space and cooperate according to
simple mathematical formulas in order to find an optimal solution.
Each particle is driven by three components: an inertia component,
an individual component and a collective component.

In the D-dimensional search space:

• the position of the i-th particle at time t is xi(t) =
(xi1(t), ..., xiD(t))

• the best position so far of the i-th particle at time t is
pbesti(t) = (pbesti,1(t), ..., pbesti,D(t))

• the best position so far of the whole swarm at time t is
gbest(t) = (gbest1(t), ..., gbestD(t))

At each iteration, the position of the i-th particle is updated:

xi(t+ 1) = xi(t) + vi(t) (1)

vi(t+ 1) = ωvi(t) + c1r1(pbesti(t)− xi(t))
+ c2r2(gbesti(t)− xi(t))

(2)

vi(t) is the velocity of the i-th particle at time t, ω is an inertia
weight scaling the previous time step velocity, c1 and c2 are two
acceleration coefficients that scale the influence of the best per-
sonal position of the particle pbesti(t) and the best global position
gbest(t) and r1 and r2 are random variables within the range of 0
and 1.

Figure 3: Schematic representation of updating the velocity of a
particle [10]

Here, 5 particles were used for the optimization. 6 iterations were
done, then 30 hyperparameters settings were evaluated. The hyper-
parameter setting that gave the best score was:

• batch size: 1

https://github.com/cgousseau/dcase_task5


Detection and Classification of Acoustic Scenes and Events 2019 Challenge

• constant for L2-regularization: 0.1
• mixup rate: 0.85
• dropout rate: 0.3

2.5. Model training

The model is trained using the following hyperparameters:

• loss: binary crossentropy as defined in the baseline
• optimizer: Adam
• learning rate: 1e-5
• batch size: 1
• constant for L2-regularization: 0.1
• mixup rate: 0.85
• dropout rate: 0.3
• number of epochs: 100

The model is trained using a GPU (NVIDIA GeForce GTX 1080),
the training takes about 1 hour.

2.6. Model selection

The model is trained during 100 epochs and AUPRC is computed
at each epoch. The best 4 models that have the best AUPRC are
stored. For each tag the AUPRC is computed and the model that
has the best AUPRC is selected to predict this tag.

3. RESULTS

3.1. Coarse-level model

The targets of this model are tags among a list of 8 which are pretty
far from each other (e.g. engine, dog, alert signal). The taxononomy
is detailed in figure 1.

best pre-trained VGG Baseline
Micro AUPRC 82.6 76.2
Micro F1-score 74.3 67.4
Macro AUPRC 61.1 54.2
Coarse tag AUPRC

engine 86.8 85.5
machinery impact 60.5 36.0
non-machinery impact 56.5 36.1
powered saw 68.9 67.9
alert signal 92.1 81.3
music 18.0 29.9
human voice 94.8 94.5
dog 11.4 2.8

3.2. Fine-level model

The targets of this model are tags among a list of 23 which can be
pretty close from each other (e.g. small engine, medium engine,
large engine). The taxononomy is detailed in figure 1.

3.2.1. Fine-level evaluation

best pre-trained VGG Baseline
Micro AUPRC 70.1 67.2
Micro F1-score 61.3 50.2
Macro AUPRC 47.2 42.7
Coarse tag AUPRC

engine 65.3 71.2
machinery impact 25.1 19.8
non-machinery impact 54.3 36.4
powered saw 31.2 38.6
alert signal 83.3 63.6
music 11.8 21.5
human voice 88.7 88.0
dog 18.2 2.9

3.2.2. Coarse-level evaluation

best pre-trained VGG Baseline
Micro AUPRC 77.4 74.3
Micro F1-score 63.8 50.7
Macro AUPRC 56.7 53.0
Coarse tag AUPRC

engine 85.2 85.9
machinery impact 27.0 28.5
non-machinery impact 54.3 36.4
powered saw 64.2 72.0
alert signal 90.4 75.3
music 18.7 28.3
human voice 95.7 94.3
dog 18.2 2.9

4. FUTURE WORK

Binary crossentropy is widely used as a loss function in classifi-
cation tasks. It is differentiable and therefore it can be used for
stochastic gradient descent. However in the DCASE 2019 Task
5, the metrics is AUPRC which is only partially correlated to
crossentropy. One can see on the figure below that AUPRC is
increasing while crossentropy is decreasing during the first epochs.
But quickly AUPRC stops increasing while crossentropy is still
decreasing.

Figure 4: Evolution of crossentropy and AUPRC during a training
(evaluation on the validation set). Recall: we want to minimize
crossentropy whereas we want to optimize AUPRC.

We can explain this by the fact that crossentropy depends on the



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

distance between the predicted probabilities and the true probabili-
ties (targets) whereas AUPRC depends on the ranking of predicted
probabilities.

An illustration: we have a problem where the true probabili-
ties (targets) are ytrue = [0, 0, 1, 1] and two diffrent predicted
probabilities (ypred1 = [0.01, 0.8, 0.2, 0.99] for case 1 and
ypred2 = [0.01, 0.6, 0.4, 0.99] for case 2).

case 1 case 2
predicted
probabilities

[0.01, 0.8, 0.2, 0.99] [0.01, 0.6, 0.4, 0.99]

true
probabilities

[0, 0, 1, 1] [0, 0, 1, 1]

crossentropy 3.24 1.85
AUPRC 0.79 0.79

We have cross entropy2 < cross entropy1 because the pre-
dicted probabilities are closer to true probabilities in case 2 than
in case 1. However the probabilities are ranked in the same order
so they will have the same precision/recall curve, and therefore the
same AUPRC.

Figure 5: Predicted probabilities for case 1 (left) and 2 (right) (green
dots correspond to a target 1, red dots correspond to a target 0).

Another loss function should be used to optimize AUPRC. AUPRC
cannot be used as a loss function since it is not differentiable. Al-
ternatives have been tested (e.g. pair-wise mean squared error) but
it showed convergence problems.

5. CONCLUSION

Tagging of urban sounds was investigated. A model based on
pre-trained VGG-style network was developped and submitted to
the challenge DCASE 2019 (task 5). The best model achieves an
AUPRC of 82.6 for the coarse-level prediction and 70.1 for the fine-
level prediction.



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

6. REFERENCES

[1] http://dcase.community/challenge2019/.

[2] J. P. Bello, C. Silva, O. Nov, R. L. Dubois, A. Arora, J. Sala-
mon, C. Mydlarz, and H. Doraiswamy, “Sonyc: A system for
monitoring, analyzing, and mitigating urban noise pollution,”
Communications of the ACM, vol. 62, no. 2, pp. 68–77, Feb
2019.

[3] D. Sarkar, R. Bali, and T. Ghosh, Hands-On Transfer
Learning with Python: Implement advanced deep learning
and neural network models using TensorFlow and Keras.
Packt Publishing, 2018. [Online]. Available: https://books.
google.fr/books?id=aPFsDwAAQBAJ

[4] https://scikit-learn.org/stable/auto examples/model selection/
plot precision recall.html.

[5] B. McFee, M. McVicar, S. Balke, V. Lostanlen, C. Thom,
C. Raffel, D. Lee, K. Lee, O. Nieto, F. Zalkow, D. Ellis,
E. Battenberg, R. Yamamoto, J. Moore, Z. Wei, R. Bittner,
K. Choi, nullmightybofo, P. Friesch, F.-R. Stter, Thassilo,
M. Vollrath, S. K. Golu, nehz, S. Waloschek, Seth,
R. Naktinis, D. Repetto, C. F. Hawthorne, and C. Carr,
“librosa/librosa: 0.6.3,” Feb. 2019. [Online]. Available:
https://doi.org/10.5281/zenodo.2564164

[6] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in International
Conference on Learning Representations, 2015.

[7] https://keras.io/applications/#vgg16.

[8] https://en.wikipedia.org/wiki/Beta distribution.

[9] Y. Shi and E. RC, “A modified particle swarm optimizer,”
vol. 6, 06 1998, pp. 69 – 73.

[10] A. Ahmadi, F. Karray, and M. S. Kamel, “Flocking based ap-
proach for data clustering,” Natural Computing, vol. 9, pp.
767–791, 09 2010.

http://dcase.community/challenge2019/
https://books.google.fr/books?id=aPFsDwAAQBAJ
https://books.google.fr/books?id=aPFsDwAAQBAJ
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://doi.org/10.5281/zenodo.2564164
https://keras.io/applications/#vgg16
https://en.wikipedia.org/wiki/Beta_distribution

	 Introduction
	 Proposed models
	 Features
	 Model structure
	 Data augmentation
	 Model optimization
	 Model training
	 Model selection

	 Results
	 Coarse-level model
	 Fine-level model
	 Fine-level evaluation
	 Coarse-level evaluation


	 Future work
	 Conclusion
	 References

