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ABSTRACT

This paper proposes a sound event localization and detection from
multichannel recording method. The proposed system is based on
two Convolutional Recurrent Neural Networks (CRNN) to perform
sound event detection (SED) and time difference of arrival (TDOA)
estimation on each pair of microphones of a microphone array. In
this paper, the system is evaluated with a four-microphone array,
and thus combines the results from six pairs of microphones to pro-
vide a final classification and a 3-D direction of arrival (DOA) esti-
mate. Results demonstrate that the proposed approach outperforms
the DCASE 2019 baseline system.

Index Terms— Sound event detection, sound source localiza-
tion, time difference of arrival, neural network

1. INTRODUCTION

Sound Event Detection (SED) is an important task of machine lis-
tening, which aims to automatically recognize, label, and estimate
the position in time of sound events in a continuous audio signal.
This is a popular research topic, due to the number of real-world
applications for SED such as home-care [1], surveillance [2], envi-
ronmental monitoring [3] or urban traffic control [4], to name just
a few. Successful Detection and Classification of Acoustic Scenes
and Events (DCASE) challenges [5, 6] now provide the community
with datasets and baselines for a number of tasks related to SED.
However, most of the effort so far has concentrated on classification
and detection of the sound events in time only, with little work done
to perform robust localization of sound event in space.

Early approaches for SED are strongly inspired by speech
recognition systems, using mel frequency cepstral coefficients
(MFCCs) with Gaussian Mixture Models (GMMs) combined with
Hidden Markov Models (HMM) [7, 8]. Methods based on dictio-
nary learning, mainly Non-negative Matrix Factorization (NMF),
are also considered as prominent solutions for the SED task [9, 10,
11]. With the recent advancements in machine learning, deep learn-
ing methods now provide state of the art results for this task [12, 13].
The prevailing architectures used for SED are Convolutional Neural
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Networks (CNNs) [14], which are particularly successful in com-
puter vision tasks. Other common approaches try to model time re-
lations in audio signal by using recurrent neural networks (RNNs)
[12]. Both can be combined in a Convolutional Recurrent Neural
Network (CRNN), which achieves state of the art results on several
tasks of machine listening [15, 16, 17].

On the other hand, sound source localization (SSL) refers to es-
timating the direction of arrival (DOA) of multiple sound sources.
There are two popular categories of SSL methods: 1) high reso-
lution and 2) steered-response techniques. High resolution meth-
ods include Multiple Signal Classification (MUSIC) [18] and Es-
timation of Signal Parameters via Rotational Invariance Technique
(ESPRIT) [19]. These approaches, although initially designed for
narrowband signals, can be adapted to broadband signals such as
speech [20, 21, 22, 23, 24]. Alternatively, the Steered-Response
Power Phase Transform (SRP-PHAT) robustly estimates the di-
rection of arrival of speech and other broadband sources [25].
SRP-PHAT relies on the Generalized Cross-Correlation with Phase
Transform (GCC-PHAT) between each pair of microphones of
a microphone array. It is therefore convenient to estimate the
time difference of arrival (TDOA) values for each pair, and com-
bine these results to estimate the direction of arrival for a source
[26, 27, 28, 29, 30], which is the approach we choose for this chal-
lenge.

In this paper we propose a system for sound event detection and
localization (SELD), which we submit to the Task3 of DCASE2019
Challenge [31]. Motivated by the results obtained by [32], we pro-
pose a CRNN architecture that uses both the spectrogram and GCC-
PHAT features to perform SED and estimate TDOA. However, as
we believe that TDOA and SED are distinct tasks with different op-
timal solutions, we propose to use two separate neural networks for
each of these two tasks. The results are then combined together to
generate a final SED decision and estimate the DOA.

2. SOUND EVENT LOCALIZATION AND DETECTION

The goal of a sound event localization and detection (SELD) system
is to output all instances of the sound events in the recording, its
respective onset-offset times, and spatial locations in azimuth and
elevation angles, given a multichannel audio input. An example of
such a setup has been provided in Task 3 of the DCASE 2019 Chal-
lenge [31]. Our system uses the TAU Spatial Sound Events 2019 -
Microphone Array dataset, which provides four-channel directional
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microphone recordings from a tetrahedral array configuration. A
detailed description of the recording procedure may be found in
[17]. In our approach, we propose to predict events and TDOAs
for each pair of microphones, which leads to a total six pairs.

3. PROPOSED METHOD

We propose a method based on a combination of two convolu-
tional recurrent neural networks (CRNNs), that share the same ar-
chitecture. First network, CRNNSED , is trained to detect, label
and estimate onset and offsets of sound events. Second network,
CRNNTDOA, estimates the TDOA for each pair of microphones
and each class of sound events. The SED results of all pairs are
then combined together and a threshold is applied to make a final
decision regarding sound detection for each class. The TDOAs are
also combined together for all pairs of microphones and a DOA is
generated for each class. To obtain a DOA from the TDOA val-
ues, each potential DOA is assigned a set of target TDOAs, which
are found during a initial calibration procedure. Figure 1 shows the
overall architecture of the proposed system. The following subsec-
tions describe in details each building block of the system.

Figure 1: Architecture of the proposed system.

3.1. Calibration

The search space around the microphone array is discretized in Q
DOAs, which are indexed by q ∈ Q = {1, 2, . . . , Q}. Each
DOA q is associated to an azimuth and an elevation, denoted by
(φq, θq), where φq ∈ {−180◦,−170◦, . . . ,+170◦} and θq ∈
{−40◦,−30◦, . . . ,+40◦}. The number of microphones corre-
sponds to M ∈ N, and the number of pairs to P ∈ N, where
P = M(M − 1)/2. Each DOA q also corresponds to a vector
τ q ∈ DP of TDOA values, whereD = {−τmax, . . . ,+τmax} and
the cardinality |D| = G. The expressions τmax ∈ R+ and G ∈ N
stand for the maximum TDOA and the number of discrete TDOA
values, respectively. Assuming free field propagation of sound, the
microphone array geometry and the speed of sound usually provide
enough information to estimate the TDOA values of each DOA.
However, the free field assumption becomes inaccurate when deal-
ing with a closed microphone array, and thus calibration based on
the recorded signals is needed and is performed offline.

The expression Xt
m[k] ∈ C stands for the Short-Time Fourier

Transform (STFT) coefficient at frame index t ∈ N, microphone
index m ∈ M = {1, 2, . . . ,M} and bin index k ∈ K =
{Kmin,Kmin + 1, . . . ,Kmax}, where K = Kmax − Kmin

stands for the total number of frequency bins used. The frame
and hop sizes correspond to N ∈ N and ∆N ∈ N, respec-
tively, and the spectral content thus spans frequencies in the interval
[KminfS/N,KmaxfS/N ] Hz, where fS ∈ N stands for the sam-
ple rate in samples/sec. The cross-correlation Xt

i,j [k] for each mi-
crophone pair (i, j) ∈ P = {(x, y) ∈ M2 : x < y} corresponds

to:
Xq
i,j [k] =

∑
t∈Tq

Xt
i [k]Xt

j [k]∗ (1)

where Tq is a set that contains all the frame indexes where a sin-
gle source is active at DOA q, and (. . . )∗ stands for the complex
conjugate operator. The Generalized Cross-Correlation with Phase
Transform (GCC-PHAT) is then computed as follows:

xqi,j [τ ] =
∑
k∈K

Wi,j [τ, k]
Xq
i,j [k]

|Xq
i,j [k]| (2)

where Wi,j [τ, k] = exp(2π
√
−1τk/N), with τ ∈ D.

The TDOA value for the pair (i, j) and DOA q then corresponds
to:

τ̄ qi,j = arg max
τ∈D

{xqi,j [τ ]} (3)

Since there is a limited amount of sound events per DOA in the
training dataset, the estimated TDOAs τ̄ qi,j ∀ (i, j) ∈ P, ∀ q ∈ Q
can be noisy. To cope with this limitation, we apply a poly-
nomial fitting method with an order of 27 (found empirically).
For each discrete elevation angle θ ∈ {−40◦,−30◦, . . . ,+40◦},
there are 36 azimuths φ ∈ {−180◦,−170◦, . . . ,+170◦}, and the
TDOAs associated to these azimuths vary smoothly. Therefore,
for each pair (i, j) and elevation θ, we concatenate the estimated
TDOAs three times to create a signal that spans over the azimuths
φ ∈ {−540◦,−530◦, . . . ,+540◦} and avoids the discontinuities
observed at −180◦ and 170◦ within the initial range. A first poly-
nomial fitting is then performed, and the outliers are removed prior
to performing a second fitting, which finally provides the estimated
TDOA τ qi,j for each DOA q for the pair (i, j):

τ qi,j = polyfit(τ̄ qi,j) (4)

Figure 2 shows an example of the proposed method and how it
deals effectively with outliers. Note that once the polynomial coef-
ficients are obtained, the TDOAs are only estimated in the region of
interest, which is in the range φ ∈ {−180◦,−170◦, . . . ,+170◦}.

Figure 2: Calibration model for DOA estimation. First polynomial
fit is shown in blue, and the second one after removing the outliers
is in red.

3.2. Neural network architecture

The main building block of our system are two CRNNs that share
the same architecture, as shown in Fig. 3.
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Figure 3: Architecture of CRNNSED and CRNNTDOA.

The network consists of two branches. First one is a series
of convolutional layers (CNN), that process the log amplitude and
phase of the instantaneous cross-correlation input spectrograms (as
in (1)) between microphones i and j. In parallel, GCC-PHAT fea-
tures (as in (2), but for a single frame t) are fed into a branch of
network that consists of two feed-forward layers. The outputs of
two branches are concatenated and passed to a Bidirectional Gated
Recurrent Unit (GRU) layer. The resultant vector is considered as
a task dependent embedding of the input data. The embedding is
passed to two feed forward layers, followed by an activation func-
tion, which depends on the task of the network.

CRNNSED is trained in a supervised manner using SED labels,
i.e. information about the onset, offset and label of a sound event.
As SED task may be pinned down to a multi-label classification of
time frames, we use binary cross entropy as a loss function of the
network. A Sigmoid activation function outputs the probabilities
between 0 and 1 of each class for each time frame.

CRNNTDOA is trained on TDOA labels for each pair of micro-

phones. The problem of TDOA estimation is defined in a regression
framework. Hence, Mean Squared Error (MSE) loss is used to train
the network. Similarly to the CRNNSED , the network consists of
CNNs and GRU, followed by an activation function, Hyperbolic
Tangent (tanh) in this case, scaled by τmax as the TDOA value lies
in the range [−τmax,+τmax]. Note that the TDOA is only esti-
mated over segments where the corresponding sound event is active
according to the reference labels, as proposed in [32].

Both networks are trained separately on all pairs of micro-
phones, using segments of 3 sec selected randomly amongst the
training dataset, and using the Adam optimizer with a learning rate
of 10−3 and a batch size of 16. We stopped training network when
no further improvement is observed with on validation set, that is
after 120,000 segments for CRNNSED and 160,000 segments for
CRNNTDOA.

3.3. Event detection

CRNNSED returns a value eti,j [c] ∈ [0, 1] for each pair of mi-
crophones (i, j) and class c ∈ {1, 2, . . . , C}. These values are
summed up for all pairs and each class, and normalized by the num-
ber of pairs, which leads to a new expression et[c] ∈ [0, 1]:

et[c] =
1

P

M∑
i=1

M∑
j=i+1

etij [c] (5)

An event from class c is then considered to be detected at frame
t if et[c] exceeds a threshold, which is class specific:

Et[c] =

{
1 et[c] ≥ ε[c]
0 et[c] < ε[c]

(6)

A post-filter method finally ensures that each sound event lasts
a minimum amount of frames (denoted by γ) to avoid false detec-
tion of sporadic events. For evaluation purpose, the event activity
is usually defined for a given segment l, where T l = {tL, tL +
1, . . . , t(L + 1) − 1} holds the L frames that belong to segment l.
The estimated event activity EventlE [c] is then said to be active if
at least one frames within the interval indicates the event is active.

3.4. DOA estimation

Similarly, CRNNTDOA returns an estimated TDOA τ̂ ti,j [c] for each
class c and pair of microphone (i, j) at frame t. For each DOA at in-
dex q, the estimated TDOAs τ̂ ti,j [c] are compared to the theoretical
values τ qi,j obtained from polynomial fitting during the calibration
step. A gaussian kernel with a variance of σ2 then generates a value
close to 1 when both TDOAs are close to each other, whereas this
value goes to zero when the difference increases. All DOAs are
scanned for each class, and the one that returns the maximum sum
corresponds to the estimated DOA index qt[c]∗:

qt[c] = arg max
q∈Q

M∑
i=1

M∑
j=i+1

exp

[(
τ̂ tij [c]− τ qij

)2
2σ2

]
(7)

The estimated DOAs are then concatenated in DOAt
E :

DOAt
E = {(φqt[c], θqt[c])} ∀ c where Êt[c] = 1 (8)
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4. RESULTS

The proposed system is evaluated on the DCASE 2019 develop-
ment dataset. This set is divided into 4 cross-validation splits of
100 one-minute recordings each, as described in [17]. Table 1 lists
the parameters used in the experiments. The sample rate fS and
the number of microphones M match the DCASE dataset param-
eters. The frame size N corresponds to 43 msecs, which allows a
good trade-off between time and frequency resolutions. The hop
size ∆N provides a spacing of 20 msecs between frames, which
corresponds to the hop length for evaluation in the actual challenge.
The values ofKmin andKmax are set to provide a frequency range
that goes up to 12 kHz (and exclude the DC component), which
is where most of the sound event energy lies. The parameter γ is
chosen to ensure a minimum sound event duration of 100 msecs,
and the standard deviation σ is found empirically to provide a good
DOA resolution with G TDOA values. The maximum value for a
TDOA is set such that this includes all possible TDOA values for the
actual array geometry. Finally, the neural network hyperparameters
B, F , O, H and D are found empirically from observed perfor-
mances with the validation set. Also note that the event thresholds
ε[c] are found empirically by scanning values between 0 and 1 and
selecting thresholds that lead to the best event detection metrics on
the validation set.

Param. Value Param. Value Param. Value
fS 48000 Kmin 1 B 3
M 4 Kmax 513 F 64
N 2048 γ 5 O 4

∆N 960 σ 2.0 H 512
τmax 20.0 G 101 D 256

Table 1: Parameters of the proposed system

To evaluate the performance of the system, events are defined
for segments of 1 sec (L = 50). We define the number of true
positives (TP l) for segment l as the number of correctly estimated
events with respect to the reference events activity (EventlR[c]):

TP l =

C∑
c=1

EventlE [c] · EventlR[c] (9)

Similarly, the number of false negatives (FN l) and false posi-
tives (FP l) are given by:

FN l =

C∑
c=1

EventlE [c] · (1− EventlR[c]) (10)

FP l =

C∑
c=1

(1− EventlE [c]) · EventlR[c] (11)

Finally the total number of active events corresponds to:

N l =
C∑
c=1

EventlR[c] (12)

We then define substitutions (Sl), deletions (Dl) and insertions
(Il) are defined as:

Sl = min {FN l, FP l} (13)

Dl = max {0, FN l − FP l} (14)

Il = max {0, FP l − FN l} (15)
This leads to the event rate (ER) and F1-score (F) metrics [33]:

ER =

∑
l S

l +
∑
lD

l +
∑
l I
l∑

lN
l

(16)

F =
2
∑
l TP

l

2
∑
l TP

l +
∑
l FN

l +
∑
l FP

l
(17)

On the otherhand, the DOA metrics consist of the DOA error
(DOAE) and frame recall (FR) [16]. The DOAE is obtained as fol-
lows:

DOAE =

(
T∑
t=1

Dt
E

)−1 T∑
t=1

H(DOAt
R,DOAt

E) (18)

where Dt
E denotes the number of estimated events, H(. . . ) stands

for Hungarian algorithm and DOAt
R represents the reference

DOA. The pair-wise costs between individual predicted and refer-
ence DOAs corresponds to:

h = arccos (sinφE sinφR + cosφE cosφR cos (θR − θE))
(19)

where φE and φR stand for the azimuth of the estimated and refer-
ence DOA, respectively, and θR and θR stand for the elevation of
the estimated and reference DOA, respectively.

Finally, the frame recall corresponds to the following expres-
sion, whereDt

R denotes the number of reference events, and 1(. . . )
stands for the indicator function that generates an output one if the
condition (Dt

R = Dt
E) is met, or zero otherwise:

FR =
1

T

T∑
t=1

1(Dt
R = Dt

E) (20)

Table 2 summarizes the results for the baseline and the pro-
posed method. This shows that the proposed system outperforms
the baseline for all metrics, and improves particularly the accuracy
of the estimated DOA.

Method Dataset ER F DOAE FR

Baseline Dev. 0.35 80.0% 30.8◦ 84.0%
Eval. – – – –

Proposed Dev. 0.20 87.8% 6.5◦ 87.6%
Eval. – – – –

Table 2: Performances in terms of Error Rate (ER – less is better),
F score (F – more is better), Direction of Arrival Error (DOA – less
is better) and Frame Recall (FR – more is better).

5. CONCLUSION

In this paper, we propose a system to detect sound events and es-
timate their TDOA for each pair of microphones, which then com-
bines them to detect sound events and estimate their DOA for a four-
microphone array. The proposed method outperforms the DCASE
2019 baseline system.

In future work, additional neural networks architecture should
be investigated for SED. Moreover, making the system work online
(by using unidirectional GRU layers for instance) would make the
method appealing for real-life applications.
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