
Detection and Classification of Acoustic Scenes and Events 2019 Challenge

ACOUSTIC SCENE CLASSIFICATION BASED ON DEEP CONVOLUTIONAL NEURAL
NETWORK WITH SPATIAL-TEMPORAL ATTENTION POOLING

Technical Report

Huang Zhenyi, Jiang Dacan

School of Computer, South China Normal University
Guangzhou, China

767163703@qq.com, kevien2007@foxmial.com

ABSTRACT

Acoustic scene classification is a challenging task in machine learn-
ing with limited data sets. In this report, several different spectro-
grams are applied to classify the acoustic scenes using deep convo-
lutional neural network with spatial-temporal attention pooling. In
addition, mixup augmentation is performed to further improve the
classification performance. Finally, majority voting is performed on
six different models and an accuracy of 73.86% is achieved which is
11.36 percentage points higher than the one of the baseline system.

Index Terms— Acoustic scene, CNN, MFCC, CQT, Spatial-
temporal attentione

1. INTRODUCTION

Sound contains complex information and plays an important role
in human life. Acoustic scene classification has become one of the
main tasks of sound analysis. Nowadays, acoustic scene classifica-
tion has been applied in monitoring, robot navigation and context-
aware services.

Spatial-temporal attention, which was used in video-based re-
search in the early days[1]. It can be divided into two categories, the
spatial attention and temporal attention, which acquire better fea-
tures in time domain and space domain respectively. In[1], spatial-
temporal attention was used to improve the accuracy of video de-
scription and in[2], spatial-temporal attention was used to improve
the accuracy of Person Re-identification based on videos. In[3]
spatial-temporal attention is applied in acoustic scene classification
as well. Attention layers learn attention weight vectors in the spa-
tial and temporal dimensions from the recurrent output, collectively
constructing a spatio-temporal attention mask to weigh and pool the
recurrent output into a single feature vector for classification. Ac-
cording to their experiment results, the proposed method achieved
good classification performance in the LITIS Rouen dataset. In-
spired by this work, we introduce spatial-temporal attention pooling
into our proposed solution.

2. DATA PREPARATION

The method of generating the spectrograms refers to the technical
report in DCASE-2017 Challenge[4]. We use three channels for the
audios: the left channel, the right channel and the mixed channel
(averaging the left channel and the right channel).

This work was partially supported by the Educational Commission of
Guangdong Province, China under Grant 2016KTSCX025.

2.1. MFCC Spectrogram

MFCC spectrograms are used in our method. The feature extrac-
tion of Mel frequency cepstrum coefficients includes two key steps:
transforming to Mel frequency, and performing cepstrum analysis.
To extract MFCC features, we use python the Librosa library. The
parameter settings are as followed: the sample rate is set as 44100
and the number of Mel coefficients is 128.

Firstly, short-time Fourier transformation(STFT) is performed
to transform the time domain signal into time-frequency presenta-
tions. The window function of STFT is a hann window. During the
generation of MFCC spectrograms, we use two different window
sizes, 2048 and 1024, and the hop sizes are 1024 and 512, respec-
tively.

Once the spectrogram has been generated, we split it into sev-
eral smaller patches with fixed width and shift length. We use two
kinds of MFCC patches in our experiments. For the first one, the
patch width is 128 pixels and the shift step is 32, and the second
one, the patch width is 128 and the shift step is 64. We resize ev-
ery patch into 128 × 128. Finally, for each MFCC spectrogram, 11
patches can be generated. As a result, we can generate 33 segments
from a single audio file, corresponding to three channels.

2.2. CQT Spectrogram

Similarly, Constant Q-transform (CQT) is used to convert time do-
main signal into time-frequency representation, which was origi-
nally used for music recognition. Music is different from ordinary
sounds. It is dense in low frequency and sparse in high frequency.
To deal with this problem, CQT processes audio with variable res-
olutions. That is, selecting more sampling points in low frequency
and fewer sampling points in high frequency.

The CQT spectrogram is generated on the CQT features which
are computed from the raw audio frames by using the python Li-
brosa library. When invoking the CQT function in the library, the
sampling rate is set as 44100 and filter scale is set as 4; hop length is
512 and the number of bins is 110. For each audio file, we generate
three CQT spectrograms (the width is 938, the height is 110), each
for a channel. Once again, we split the spectrogram into patches.
The patch width is 128 and the shift step is 64.

2.3. HPSS-MFCC Spectrogram

Inspired by [5], we also use Harmonic-percussive source separation
to deal with the audio before generating MFCC Spectrogram. On a
very rough level, many sounds can be divided into two categories:
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Table 1: DCNN model with Spatial-temporal attention pooling
Input 1× 128× 128

3× 3 Conv(pad-’SAME’, stride-2)-64-BN-ReLu
3× 3 Conv(pad-’SAME’, stride-1)-64-BN-ReLu

2× 2 MaxPooling(stride-2,1)
3× 3 Conv(pad-’SAME’, stride-1)-128-BN-ReLu
3× 3 Conv(pad-’SAME’, stride-1)-128-BN-ReLu

2× 2 MaxPooling(stride-2,1)
3× 3 Conv(pad-’SAME’, stride-1)-256-BN-ReLu
3× 3 Conv(pad-’SAME’, stride-1)-256-BN-ReLu
1× 1 Conv(pad-’SAME’, stride-1)-256-BN-ReLu

2× 2 MaxPooling(stride-2,1)
3× 3 Conv(pad-’SAME’, stride-1)-512-BN-ReLu
3× 3 Conv(pad-’SAME’, stride-1)-512-BN-ReLu
1× 1 Conv(pad-’SAME’, stride-1)-512-BN-ReLu

2× 2 MaxPooling(stride-2,1)
Spatial-Temporal Attention pooling

Fully connected layer-10-ReLu
10-way SoftMax

harmonic or percussive sounds. The goal of harmonic-percussive
source separation (HPSS) is to decompose a given input signal into
a sum of two component signals, one consisting of all harmonic
sounds and the other consisting of all percussive sounds. In our
experiment, the method applied to separate harmonic source and
percussive source is the same to the one of [5].

3. NETWORK ARCHITECTURE

3.1. Deep Convolutional Neural Network

Similar to [4], we adopt a DCNN model to perform acoustic scene
classification, which follows a VGG style network. Our network ar-
chitecture is depicted in Table 1. After multiple layers of convolu-
tion and maxpooling, we add the spatial-temporal attention pooling
layer.

3.2. Spatial-Temporal Attention pooling

As shown in Table 1, after four layers of convolution and pooling,
we obtain the output θ ∈ R4×64×512. Then θ is reshaped to O ∈
RS×T , where S = 4× 512 and T = 64. S is considered as spatial
domain and T is considered as temporal domain.

After O is obtained, we have to learn a spatial-temporal at-
tention mask to pool and reduce it into a single feature vector.
atem ∈ RT and aspa ∈ RS are two attention vectors, where atem

for temporal attention and aspafor spatial attention.[3] We have the
following formula:

atemt =

(
exp(f(ot))∑T
i=1 exp(f(oi))

)
, (1)

aspas =

(
exp(f̄(ōt))∑S
i=1 exp(f̄(ōi))

)
, (2)

In (1) and (2), atemt is the temporal attention weight at the time
index t, 1 ≤ t ≤ T .Similarly, aspas is the spatial attention weight at

the spatial index s, 1 ≤ s ≤ S. ot represents the column of O at
the column (i.e. temporal) index t and ōs represents the row of O at
the row (i.e. spatial) index s. f and f̄ are the scoring functions of
temporal and spatial attention layers, and they can be computed as:

f(o) = oTW, (3)

f̄(ō) = ōT W̄ , (4)

In(3) and (4), W and W̄ are the trainable weight matrices.

A = aspa ⊗ atem, (5)

In (5), we obtain the spatial-temporal attention mask A by vector
outer product between aspa and atem

xs =

T∑
t=1

tanh(AstOst), s ∈ [1, S] (6)

Finally, We get the feature vector x ∈ RS in (6). we do element-
wise multiplication between the output O and the spatial-temporal
attention mask A. Next, use a tanh activation prior to the summa-
tion.Inspired by[6], because of the output x range(-1,1), it is said
that tanh activation does not only suppress the irrelevant features
but also enhances the informative ones in the resulting feature vec-
tor x. In the end, the obtained feature vector x will be sent to a fully
Connected layer to complete classification.

4. DATA AUGMENTATION

Because of the insufficient training data, it is necessary to expand
the training data, which is expected to improve the generalization
ability of the model. Mixup[7] is an effective data augmentation
method proposed in 2017. Mixup had proposed a general aug-
mentation approach: mixing different samples of the training set
according to their weights, and mixing labels according to their
weights.The method is as follows:

X = λXi + (1− λ)Xj (7)
y = λyi + (1− λ)yj (8)

Where, λ ∈ [0, 1] and it is acquired by sampling from the beta dis-
tribution Beta(α, α), α ∈ (0,∞). Note that α is a hyper parame-
ter. Xi and Xj are different data, yi and yj are their corresponding
label. In our experiment, we use the mixup to augment the MFCC
and HPSS-MFCC spectrograms.

5. PROPOSED METHOD

In our experiment, we have totally trained six models. From the
Figure 1, we totally used three different methods to generate spec-
trogram. When generating MFCC spectrogram, two different win-
dow sizes and hop sizes are used. The first one is 2048 window
size and 1024 hop size, the second one is 1024 window size and
512 hop size. When generating the HPSS-MFCC spectrograms, the
first setting is applied. Consequently, we totally have four different
types of spectrograms. They are MFCC2048,1024, MFCC2048,1024,
CQT, HPSS-MFCC2048,1024. We trained six models with two simi-
lar networks, one having a spatial-temporal attention pooling layer,
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Figure 1: Spectrogram Generation Method

while the other one having not. Except for the spatial-temporal at-
tention pooling layer, the two networks are totally identical. The
one with the spatial-temporal attention pooling layer is denoted as
DCNNsp in the remainder of this report, and the other one is de-
noted as DCNNnonsp. The six models are as follows:
(1) MFCC model: MFCC2048,1024 is fed into DCNNnonsp as input.
(2) MFCC-STAP model: MFCC2048,1024 is fed into DCNNsp as in-
put.
(3) MFCC-STAP-mixup model: Mixup augmentation is performed
on the MFCC2048,1024 data and the DCNNsp is applied upon them.
(4) CQT+MFCC model: CQT and MFCC1024,512 are organized as
two channels which are fed into the DCNNnonsp network.
(5) CQT+MFCC-STAP model: CQT and MFCC1024,512 are orga-
nized as two channels which are fed into the DCNNsp network.
(6) MFCC(HPSS)-STAP-mixup model: Mixup augmentation is
performed on the HPSS-MFCC2048,1024 data and the DCNNsp is
applied upon them.

As shown in Figure2, we integrate 6 models using majority vote
method upon each sample probability.

6. EXPERIMENTS AND RESULT

6.1. Datasets

The dataset for this task is the TAU Urban Acoustic Scenes 2019
dataset, consisting of recordings from various acoustic scenes. This
dataset extends the TUT Urban Acoustic Scenes 2018 dataset with
other 6 cities to a total of 12 large European cities. For each scene
class, recordings were done in different locations; for each record-
ing location there are 5-6 minutes of audio. The original recordings
were split into segments with a length of 10 seconds that are pro-
vided in individual files. Available information about the record-
ings include the following: acoustic scene class, city, and record-
ing location. The dataset includes 10 scenes which are Airport, In-
door shopping mall, Metro station, Pedestrian street, Public square,
Street with medium level of traffic, Travelling by a tram, Travelling

by a bus, Travelling by an underground metro, Urban park. In or-
der to improve the accuracy of the experiment, we use 5-fold cross
validation in our experiment.

6.2. Experimental parameters

In the experiment, the initial learning rate was set as 0.0001, and
the batch size was set as 256. In the training process, we set the
number of epochs as 100. In order to accelerate training, we used
early stop strategy. Specifically, if the accuracies of 20 consecutive
epochs did not improve, the training will be terminated in advance.
We also use the L2-Regularization with a weight decay of 0.0005.

Note that for the CQT+MFCC and CQT+MFCC-STAP mod-
els, there are several differences of network parameters from the
ones presented in Table 1. Firstly, the input of the network is
2× 128× 128, where CQT and MFCC act as one channel, respec-
tively. Second, the first convolution stride in the first layer is set as
1, and the output channels of all convolutions in the third layer are
set to 256. As a result, we gain an O ∈ R4×128×256 as the input of
the spatial-temporal attention pooling layer.

6.3. Ensemble method

Majority voting is a straightforward and simple method in this sit-
uation. Specifically, each sample produces one vote and the class
which wins the most votes is considered as the final result. As
shown in Table 2, with the ensemble of six models, an accuracy
of 73.86% is achieved for the TAU Urban Acoustic Scenes 2019
dataset.

6.4. Result

Experimental results are demonstrated in Table 2. As we can see,
all the results have outperformed, the one of the baseline system.
In addition, by ensemble the six models, the accuracy is greatly
improved (which is 73.8% here). Table 3 describes the per scene
accuracy in audio in the best model.
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Figure 2: The ensemble method

Table 2: Classification results of Development dataset. STAP:
Spatial-Temporal Attention pooling. HPSS: Harmonic-percussive
source separation

Models Accuracy(Development)
Baseline 62.5% (±0.6)
MFCC 63.2% (±0.5)

MFCC-STAP 69.6 % (±0.5)
MFCC-STAP-mixup 71.1% (±0.5)

CQT+MFCC 68.8% (±0.5)
CQT+MFCC-STAP 68.1% (±0.5)

MFCC(HPSS)-STAP-mixup 65.5% (±0.5)
Ensemble model 73.86%

7. CONCLUSION

In this paper, we use a variety of spectrograms(such as MFCC,
CQT, and HPSS-MFCC spectrograms) to classify scenes. In ad-
dition, we use the spatial-temporal attention pooling to promote
the classification performance. According to our experimental re-
sults,the accuracy of single best model is 71.1%,which is 8.6 per-
centage points higher than that of the baseline. However, when
ensemble model is considered, the best result is 73.86%, which is
11.36 percentage points higher than that of baseline.
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