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ABSTRACT

In this technical report, we describe our submission for the Detec-
tion and Classification of Acoustic Scenes and Events 2019 task1-a
competition which exploits knowledge distillation with specialist
models. Different acoustic scenes that share common properties
are one of the main obstacles that hinder successful acoustic scene
classification. We found that confusion between scenes, sharing
the common properties, causes most of the errors in the acoustic
scene classification. For example, the confusing scene pairs such
as airport-shopping mall and metro-tram have caused the most er-
rors in various systems. We applied knowledge distillation based
on the specialist models to address the errors from the most confus-
ing scene pairs. Specialist models where each model concentrates
on discriminating a pair two similar scenes are exploited to provide
soft-labels. We expected that knowledge distillation from multi-
ple specialist models and a pre-trained generalist model to a single
model could train an ensemble of models that gives more emphasis
on discriminating specific acoustic scene pairs. Through knowledge
distillation from well trained model and specialist models to single
model, we report improved accuracy on the validation set.

Index Terms— Acoustic scene classification, Specialist mod-
els, Knowledge distillation, Teacher-student learning, Deep neural
networks

1. SYSTEM DESCRIPTION

In this technical report, we describe out submission for the Detec-
tion and Classification of Acoustic Scenes and Events (DCASE)
2019 competition task 1-a [1, 2]. Our submission exploits a score-
level ensemble where one uses a convolutional neural network
(CNN) that inputs raw waveforms and the other one uses a CNN
that inputs log Mel-energy features. Details regarding the idea, hy-
pothesis and other academical points of view will be dealt in the
workshop paper which we will submit for DCASE 2019 workshop.

2. FEATURE EXTRACTION

For the raw waveform model, we apply pre-emphasis and no other
pre-processing methods such as utterance or global mean and stan-
dard deviation normalization. We use raw waveform from both
channels (left and right, stereo) without modification, making the
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Table 1: Hyper-parameters for Mel-energy feature extraction.

Hyper-parameter
frame length 100ms

shift size 40ms
number of FFT bins 4800

number of filters 256
pre-emphasis with 0.97 coefficient
normalization global mean

& variance normalization

Table 2: DNN architecture of raw waveform model with input se-
quence shape: (479999 × 2). At training phase, input sequence
shape is (239999×2) where 239999 samples are randomly selected.

Layer Output shape Kernel size Stride
Conv1 39999× 64 12 12

Res1 13333× 64 3 1
Res2 4444× 128 3 1
Res3 1481× 128 3 1
Res4 493× 128 3 1
Res5 164× 128 3 1
Res6 54× 128 3 1
Res7 18× 128 3 1

GlobalPool 128 - -
Dense1 64 128× 64 -
Output 10 64× 10 -

shape of our input to the CNN as (#sample, 2) where #sample
would be 480,000 when using the whole audio segment. At train-
ing phase we randomly crop about 3 s from each audio segment for
data augmentation effect (because different part is cropped from the
identical audio segment every epoch) and boosting training speed.
At evaluation phase, all 10 s segment is input. This procedure fol-
lows that of [2].

For the log Mel-energy feature model, we extract an 256 di-
mensional log Mel-energy features with an window length of 100
ms and shift size of 40 ms. No delta nor delta-delta coefficients are
used. Table 1 shows the details of Mel-energy feature extraction.

3. NETWORK ARCHITECTURE

The raw waveform and Mel-energy models use CNN architectures
with residual connections and pooling layers [3, 4], which is identi-
cal to that used in [5]. Table 2 and 3 describe overall architectures
of raw waveform and Mel-energy model, respectively.
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Figure 1: Workflow of the training procedure.

Table 3: CNN architecture for Mel-energy model (l: length of input
sequence).

Layer Output shape Kernel size Stride
Conv1 l × 252× 30 7× 7 1× 1

Res1 l × 252× 30 3× 3 1× 1
Res2 (l/2)× 126× 60 3× 3 2× 2
Res3 (l/4)× 63× 120 3× 3 2× 2
Res4 (l/12)× 21× 240 3× 3 3× 3

AvgPool 240 Global Global
Output 10 240× 10 -

4. TRAINING PROCEDURE

Our submission comprises a three stage training phase: first we
train the generalist model, second we train specialist models where
each specialist model further concentrates on discriminating a pair
of most confusing scenes depending on the confusion matrix of the
generalist model, and the last phase of knowledge distillation (KD)
training from generalist and two specialist models to a single model.
Note that terms ‘generalist’ and ‘specialist’ refer to those from Hin-
ton et al.’s paper that describes knowledge distillation [6].

At the first phase, we train the generalist model which exploits
categorical cross-entropy shown in the following equation,

LCE(θ) = −
N∑
i=1

logP (yi|xi; θ), (1)

where N is the number of training data samples, P is function
(DNN) that maps input data to a posterior distribution using the
softmax output, and xi is the input, θ is parameter set of the model,
and yi denote the i′th input data and the corresponding label, re-
spectively. In our models, based on DNN, P is defined by applying
softmax function to the output layer as follow:

P (i|x; θ) = exp(zi)∑
j

exp(zj)
, (2)

where z is the output of the output layer.
After training the generalist model, we calculate the confusion

matrix and find the two most confusing pairs of acoustic scenes

Table 4: Common hyper-parameters for training raw waveform
model (lrt: learning rate at the t′th iteration).

Hyper-parameter
max epoch 70
batch size 24

weight of L2 regularization 0.001
data augmentation mixup (α = 0.1) [7]

optimizer AMSGrad [8]
initial learning rate 0.0001

beta1, beta2 0.9,0.999
learning rate scheduling multiply 0.2 at 20, 50th epoch

which two specialist models respectively concentrates to discrimi-
nate. For training specialist model, we follow the recipe introduced
in Hinton et al.’s study where for each mini-batch construction, half
are sampled from the target confusing pair, and the other half are
sampled from other acoustic scenes. We initialize specialist mod-
els with trained generalist model’s weight parameters. Categorical
cross-entropy is used as the loss function for specialist training.

After training the generalist and two specialist models, we con-
duct knowledge distillation from these three models to one model,
which is also initialized using the weight parameters of the general-
ist model using the following equation 3:

LKD(θ; θg, S)

= −
N∑
i=1

M∑
i=j

logQ(j|xi; θ)[Q(j|xi; θg) +
∑
θs∈S

Q(j|xi; θs)],

(3)

Q(i|x; θ) = exp(zi/T )∑
j

exp(zj/T )
, (4)

where Q denotes the probability function with concept of tempera-
ture T [6], θg is parameter set of the generalist model, θs is param-
eter set of the specialist model, and S is the set of specialist models.
The loss function LKD has been proposed to train the single model
that achieves an ensemble of models with different characteristics
[6].
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Table 5: Common hyper-parameters for training Mel-energy model
(lrt: learning rate at the t′th iteration).

Hyper-parameter
max epoch 200
batch size 50

weight of L2 regularization 0.0001
data augmentation mixup (α = 0.1) [7]

optimizer Adam [9]
initial learning rate 0.001

beta1, beta2 0.9,0.999
learning rate scheduling lrt =

initial lr
1+0.0001t

Table 6: Performances of various systems on fold-1 configuration
in accuracies (%) (G: generalist model, S1: 1′th specialist model,
S2: 2′nd specialist model, St: student model).

System G S1 S2 St
Raw waveform 73.71 74.89 74.53 75.81

Mel-energy 74.33 74.12 74.48 76.15

5. RESULTS

We evaluated the systems, described in this report, by following
the fold-1 configuration of DCASE2019 task1-a. Table 6 shows
the performances of various models according to input features and
training methods.
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