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ABSTRACT

In this report, we detail the CP-JKU submissions to the DCASE-
2019 challenge Task 1 (acoustic scene classification) and Task 2
(audio tagging with noisy labels and minimal supervision). In all
of our submissions, we use fully convolutional deep neural net-
works architectures that are regularized with Receptive Field (RF)
adjustments. We adjust the RF of variants of Resnet and Densenet
architectures to best fit the various audio processing tasks that use
the spectrogram features as input. Additionally, we propose novel
CNN layers such as Frequency-Aware CNNs, and new noise com-
pensation techniques such as Adaptive Weighting for Learning from
Noisy Labels to cope with the complexities of each task. We prepared
all of our submissions without the use of any external data. Our
focus in this year’s submissions is to provide the best-performing
single-model submission, using our proposed approaches.

Index Terms— Acoustic Scene Classification, audio tagging,
noisy labels, CNNs, Receptive Field Regularization

1. INTRODUCTION

In this year’s DCASE-2019 challenge, we target three tasks: Acous-
tic Scene Classification (ASC) without mismatch (Task 1.A), ASC
under mismatched condition (Task 1.B) [1], and Audio Tagging with
noisy labels (Task 2) [2]. We focus our efforts on providing vari-
ants of successful architectures that can achieve good performance
with a single model. We base all of our submissions on a recent
study of ours [3], where we analyzed the effect of Receptive Field
(RF) tuning on the performance of various architectures in ASC. We
modify the RF of various architectures such as Resnet [4], Shake-
shake [5], and Densenet [6] according to the guidelines provided
in [3]. An analysis of the RF of a model and its effect on the model’s
performance is provided in Section 3. In addition, we propose a new
idea that we call Frequency-Aware Convolutional Neural Networks
(CNNs), where the frequency locations for the input are added as an
additional channel to a CNN layer. This new approach is detailed in
Section 3.1.3.

In each task, we take advantage of recent advances in machine
learning to adjust our models to the task at hand. To deal with the dis-
tribution mismatch, we incorporate the newly proposed Shake-shake
architecture [5], a Resnet variant that is known to generalize better.
Additionally, we use Maximum Mean Discrepancy (MMD) [7], a

∗Responsible for Task 1.A and Task 2
†Responsible for Task 1.B

kernel method that can be used for domain adaptation and transfer
learning in Deep Neural Networks (DNNs).

To overcome the complexities of learning from noisy labels in
Task 2, we explore various new ideas. We propose an adaptive
weighting approach (detailed in Section 5.3), a sample selection
strategy for noisy labels (detailed in Section 5.4), and a class weight-
ing based on the label weighted label ranking average precision
(lwlwrap) (detailed in Section 5.5) to adapt the way our model learns
from the noisy labels.

2. EXPERIMENTAL SETUP

2.1. Data Preparation

We extracted the input features using a Short Time Fourier Transform
(STFT) with a window size of 2048 and 25% overlap. We perceptu-
ally weight the resulting spectrograms and apply a Mel-scaled filter
bank in a similar fashion to Dorfer et al. [8]. This preprocessing
results in 256 Mel frequency bins.

2.1.1. Task 1

The input is first down-sampled to 22.05 kHz for Task 1. We use
mono signal for Task 1.B. We process each channel independently
for Task 1.A and provide the CNN with a two-channel-spectrogram
input. The input frames are normalized using the training set mean
and standard deviation.

2.1.2. Task 2

For Task 2, we keep the original sampling rate of 44.1 kHz due to the
wide range of classes, We suspect that some information encoded in
higher frequencies can be useful to distinguish some of the classes.
The input frames are then normalized using the curated training set
mean and standard deviation.

2.2. Optimization

We used Adam [9] with a specific scheduler. We start training with a
learning rate of 1×10−4. From epoch 50 until 250, the learning rate
decays linearly from 1 × 10−4 to 5 × 10−6. We train for another
100 epochs with the minimum learning rate 5 × 10−6 in a setup
similar to [3]. In the case where there is no validation set (e.g. single
model submissions), we average the predictions of the model every
5 epochs starting from epoch 300, in order to reduce the variance
caused by picking the model at a specific epoch.
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2.3. Data Augmentation

We use mix-up [10] since it was shown to have a great impact on the
performance and the generalization of the models.

2.4. Model Averaging

Stochastic Weight Averaging: Stochastic Weight Averaging
(SWA) [11] had led to a better performance on the validation set in
our experiments on Task 2. We keep an SWA copy of the model
parameters while training. This SWA average is updated with new
parameters every 3 epochs.
Snapshot Averaging: A snapshot of the model during training is
saved every 5 epochs, within the last 100 epochs. The predictions of
all these models are then averaged for the final prediction. The snap-
shot averaging is computationally more efficient than training sepa-
rate models, and easier than stochastic weight averaging approaches
such as [11] for creating ensemble models, as no re-computation of
the layer statistics (such as batch-norm) is required.
CV Averaging: A model is trained on different CV folds, and the
predictions of models from different folds are averaged. This ap-
proach provides more robustness, as different models have seen
different training data points, hence found slightly different minima.
This approach is simple yet effective, and was used successfully in
our previous submissions [12, 8, 13].

3. ARCHITECTURES

We adapted ResNet and DenseNet variants following the guidelines
of our previous work [3]. Using the provided development set for
Task 1.A, we performed a grid search on the RF of the ResNet
architecture. We concluded that the optimal RF for the Task 1.A
dataset is around 90 × 90 pixels of our extracted spectrograms
(Section 2.1). Figure 1 shows the validation loss of the provided
development set, for ResNet with different RFs using the mono
input. The steps taken to produce this search will be published at
https://github.com/kkoutini/cpjku_dcase19.

Figure 1: Validation Loss of the provided development split of Task
1 a dataset, for ResNet with different receptive fields over a mono
input.

In Task 1.B, we used network architectures with the same re-
ceptive field as in Task 1.A, motivated by the similarity and overlap

between the two datasets, as they are both about modeling the acous-
tic scenes. For Task 2, we searched for the optimal RF using a 4 fold
Cross-Validation (CV) of the curated data only. We found that the
optimal receptive field for the dataset is around 100 × 100 pixels
over the extracted spectrograms.

3.1. ResNet

ResNet [4] and its variants (such as preact-ResNet [14]) achieve
state-of-the-art results in image recognition. As we showed in our
recent study [3], such architectures can be adapted to audio tasks
using RF regularization. We first adapt the RF of the ResNet as
explained above. The resulting network architectures are detailed in
Table 1. Both RN1 and RN2 have the same RF. Note that we used
RN1 in Task 1.B since it has fewer layers which allows for a larger
batch size as explained in Section 4.2.

We used different variants of ResNet, with the following modifi-
cations.

3.1.1. Shake-Shake Regularization

The Shake-Shake architecture [5] is a variant of ResNet that is pro-
posed for improved stability and robustness. Each residual block has
3 branches, which are summed with random coefficients (in both the
forward and backward pass) [5].

3.1.2. Pre-act ResNet

Pre-act ResNet is a ResNet variant where residual branches are
summed up before applying the non-linearity [14].

3.1.3. Frequency-aware CNNs

Since we are using fully convolutional networks, learned filters
are agnostic to the frequency information of the feature maps. In
other words, the spectrograms and feature maps can be rolled over
both the time and frequency dimension with a minor impact on the
network predictions. We propose a novel convolutional layer, namely
the Frequency-aware Convolution, to make filters more specialized
in certain frequencies by concatenating a new channel containing
the frequency information1 of each spatial pixel to each feature
map. The CNN models that incorporate our frequency-aware layer
will be called the Frequency-Aware Convolutional Neural Networks
(FACNNs) in our report. We denote the value of the pixel with spatial
index (f, t) in the new channel as V (f, t); it is calculated as follows:

V (f, t) = f/F (1)

where F is the size of the frequency dimension of the feature map, f
is the pixel index in the frequency dimension, and t is the pixel index
in the time dimension. This new channel gives the convolutional
filters a frequency context.

3.2. DenseNet

We adapted DenseNet [6] to DN1, in a similar fashion to our study
in [3]. The resulting network has a maximum receptive field of
around 90× 90 pixels.

1In this report, we used a number between 0 and 1, where 0 represents the
lowest frequency, and 1 represents the highest frequency in the spectrogram.
But this range can be adapted according to the value range of the input.
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Table 1: Modified ResNet architectures

RB Number RB Config
RN1 RN2

Input 5× 5 stride=2
1 3× 3, 1× 1, P 3× 3, 1× 1, P
2 3× 3, 3× 3, P 3× 3, 3× 3, P
3 3× 3, 3× 3, 3× 3, 3× 3
4 3× 3, 1× 1, P
5 3× 3, 1× 1, P 1× 1, 1× 1
6 1× 1, 1× 1
7 1× 1, 1× 1
8 1× 1, 1× 1
9 1× 1, 1× 1 1× 1, 1× 1

10 1× 1, 1× 1
11 1× 1, 1× 1
12 1× 1, 1× 1

RB: Residual Block, P: 2× 2 max pooling after the block.
RB number 1-4 have 128 channels.
RB number 5-8 have 256 channels.
RB number 9-12 have 512 channels.

4. ACOUSTIC SCENE CLASSIFICATION (TASK 1)

4.1. ASC without mismatch (Task 1.A)

Single model submission: Our first submission consists of the pre-
dictions of a single model trained on the whole development set with
no validation set. We average the prediction of the model every 5
epochs, after epoch 300. The results on the Kaggle leader boards are
provided in Table 2.
Average over 4-fold cross-validation submission: We randomly
split the development set into 4 folds regardless of the city or the
scene id. We then train 4 models on these splits and submitted the
average of the predictions of these models.
Average different variants submissions: We trained different vari-
ants of DenseNet and ResNet (as explained in Section 3) and aver-
aged different combinations of these models for our submissions 3
and 4 (16 models and 7 models respectively).

4.2. ASC with mismatched recording devices (Task 1.B)

Task 1.B is to classify audio snippets into acoustic scene classes,
where the model has to deal with the nuisance of a recording device
mismatch between the training and the testing data. A small set
of parallel recordings are provided in the training to be used as
adaptation data, however, the majority of the training data is from a
single device which is not targeted in the challenge test set. Hence,
a model has to learn device-invariant representations such that the
model can generalize on the new samples from various devices.

As studied in [15], CNNs have shown to suffer from significant
performance degradation when dealing with mismatched distribu-
tions at inference time. To tackle this issue, in our submission to Task
2.B we integrate a Two-Sample Test (TST) 2 based on kernel Maxi-
mum Mean Discrepancy (MMD) [7] to encourage our model to learn

2Comparing samples from two probability distributions, by proposing
statistical tests of the null hypothesis that these distributions are equal against
the alternative hypothesis that these distributions are different [7].

device-invariant embeddings, such that the embedding distribution
of various devices are indistinguishable from each other.

One advantage of TST frameworks compared to pair-wise match-
ing techniques is that, as these methods are trying to match the dis-
tributions, they do not require paired recordings. This provides more
freedom in terms of mini-batch selection and data augmentation, as
the model only needs two sets of (even unpaired) samples from two
devices.

Another family of models capable of dealing with unpaired
distribution matching are adversarial frameworks such as Generative
Adversarial Networks (GANs) [16]. One advantage of the TST
frameworks over the adversarial ones is that TST frameworks do
not require a parametric discriminator. Training a discriminator
increases the complexity of the model, and introduces new problems
to the training such as instability and mode collapse, which require
additional efforts to solve [17].

4.2.1. The Proposed Domain Adaptation Objective

We begin with the definition of our MMD measure between two
sets of samples from two different distributions. Let k be the
Gaussian RBF kernel. Then we use an estimation of MMD(P,Q)
between two distributions P and Q, given a set of m samples
X = {X1, . . . , Xm}

iid∼ P and a set of m samples Y =

{Y1, . . . , Ym}
iid∼ Q,3 defined as:

MMD(X,Y ) :=
1

m2

∑
i 6=i′

k(Xi, Xi′) +
1

m2

∑
j 6=j′

k(Yj , Yj′)

− 2

m2

∑
i 6=j

k(Xi, Yj)

(2)

As explained in [7], MMDk(P,Q) = 0 if and only if P = Q.
We now define Fl(x) as the activations of a hidden layer l, in

a feed-forward neural network F , given an input spectrogram x.
Given the definitions above, our domain adaptation loss to learn
device-invariant representations in layer l is as follows:

LMMD = MMD(Fl(x
d
i )

m
i=1,Fl(x

d′
j )mj=1) (3)

where xd
i and xd′

j are two spectrograms of audio snippets from
devices d and d′, respectively. Please note that xd

i and xd′
j are

not required to be parallel recordings of the same scene, hence are
sampled randomly in every minibatch.

For classification, we use Categorical Cross Entropy (CCE) loss,
which is combined with our domain adaptation loss as follows:

LHYB = LMMD + LCCE (4)

where LHYB is our hybrid loss, and LCCE is the categorical cross
entropy loss used for classification.

4.2.2. Training setup

Our training consists of two steps: 1) the classification step, and 2)
the hybrid step. In the classification step, we train our model for a
full epoch with the CCE loss, using a randomly selected mini-batch
of size 10 from the full training set. Each mini-batch is augmented
with mix-up [10]. In the hybrid step, our model is trained using the

3We assume the number of samples from the two distributions are equal.
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hybrid loss, on a randomly-selected set of parallel samples4. First,
two devices are randomly chosen out of the 3 available devices,
then a number of 10 samples from each selected device is randomly
selected to create a 20-samples mini-batch. This mini-batch is
further augmented via mix-up. Our model is trained iteratively using
the classification and the hybrid steps.

Architectures: We use two receptive-field-regularized CNN
architectures from [3], namely Resnet and Shake-Shake [5].
We use RN1 (Section 3.1) with Shake-Shake and our proposed
Frequency-Aware CNN layers. The exact architecture of our ResNet
is provided in Table 1, but with half the number of channels. We use
a 4-fold Cross-Validation (CV), and use the average prediction of
the resulting 4 models in our final prediction. Additionally, we use
snap-shot averaging as explained above.

4.2.3. Results

In the following, we detail our 4 submissions to the DCASE’19 Task
1.B. The results on the Kaggle leader-boards are provided in Table 2.
1) Shake-Shake/ResNet with Snapshot averaging: In this sub-
mission, we use our ResNet and Shake-Shake model. From each
architecture, 4 models are trained using our 4 folds CV. The predic-
tions from models of all the 4 folds are averaged for each test file.
Additionally, we use the average prediction of 20 snapshots from
each model as explained above for our final prediction.
2) Shake-Shake/ResNet: Similar to our first submission, this sub-
mission uses an average prediction of our ResNet and Shake-Shake
architectures. Instead of snap-shot averaging, only the best model
from each fold was used in the final prediction averaging.
3) Shake-Shake with Snapshot averaging: This submission is sim-
ilar to our first submission, but only Shake-Shake model is used.
4) Shake-Shake: In this submission, a similar approach to our sec-
ond submission is used, but only using our Shake-Shake model.

5. AUDIO TAGGING WITH NOISY LABELS AND
MINIMAL SUPERVISION (TASK 2)

5.1. Baseline

We trained a DenseNet DN1 (Section 3.2) and different variants
of RN1 (Section 3.1) on the curated data. The best performing
ResNet-based model on our cross-validation was models with both
Shake-Shake and the Frequency-Aware CNNs.

5.2. Low Learning-rate Noisy Training

To integrate the noisy data, we trained our models on the noisy labels
but with a small learning rate that is 0.2 of the learning rate used for
training on the curated data.

5.3. Adaptive-Weighting of Noisy Samples

We calculate the inner product of the noisy ground truth vector with
the vector of the predicted probabilities from the noisy samples. We
then average the resulting scalar while training each sample. The
resulting average is then used to weight the loss of each noisy sample,
when seen by the network in the future epochs. This will weight
down the noisy samples, based on the ground truth and network
predictions disagreement.

4Samples from the training set that have recordings in all A, B and C
devices.

SID Kag. Pub Kag. Prv.

Task 1.A
Single Res Snp 1 82.83 81.33
CV Res Snp 2 83.50 83.00
CV Res-FACNN Snp - 80.66 83.66
Preact\Res-FACNN Snp 3 80.50 82.50
Preact\Res-FACNN\Dense Snp 4 82.00 82.83
Task 1.B
CV Res\Shake-FACNN Snp 1 75.00 77.50
CV Res\Shake-FACNN 2 74.33 76.83
CV Shake-FACNN Snp 3 75.66 75.16
CV Shake-FACNN 4 74.33 75.83
CV Shake-FACNN (no DA) - 73.66 73.00
Task 2
Average 1 1 .728 -
Average 2 2 .725 -
CV Shake-FACNN - .715 -

Table 2: The accuracy of different methods on various test sets. Snp:
Snapshot averaging, Shake: Shake-Shake ResNet, Res: ResNet. DA:
Domain Adaptation. The details of the submissions are explained
in their respective sections with their corresponding Submission Ids
(SID).

5.4. Noisy Samples Selection

At a later stage, we average the weights of the noisy samples (as
explained in the previous section) that resulted from different runs.
We use a threshold to select only samples with higher weights, to be
used for training new models.

5.5. Inverse-Lwlwrap Class Weighting

We noticed that some classes are harder to learn, or have lower
Lwlwrap scores. To tackle this issue, we use the inverse of the
lwlwrap of a class, to weight the class’s vector term in the cross-
entropy loss function.

5.6. Submissions

We use the average of different combinations of the models trained
with the aforementioned setups for our final submissions. The results
on the Kaggle leader-board are provided in Table 2.

6. CONCLUSION

In this technical report, we detailed our approaches to tackle Task 1
(A and B) and Task 2 of the DCASE-2019 challenge. We showed
that our RF regularized CNNs can achieved high ranks on the Kaggle
public leaderboards in various tasks. We introduced several novel
techniques such as FACNNs and Adaptive-weighting, and demon-
strated their effectiveness on various DCASE-2019 datasets. This
suggests that these architectures can be an effective tool that offer
good generalization properties for various audio processing tasks .
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