Detection and Classification of Acoustic Scenes and Events 2019 Challenge
Multi-Scale Recalibrated Features Fusion for Acoustic Scene Classification
Technical Report
Chonggin Lei Zixu Wang
Chongqing University Chongqing University
College of Optoelectronic Engineering, No.174 College of Optoelectronic Engineering, No.174
Shazhengjie Shazhengjie
Shapingba, Chongqing, 400044, China Shapingba, Chongqing, 400044, China
leichongqin@cqu_edu_cn 201808021045 @Cqu.edu.cn
ABSTRACT results of the DCASE task in the past, the deep learning approach

We investigate the effectiveness of multi-scale recalibrated
features fusion for acoustic scene classification as contribution
to the subtask of the IEEE AASP Challenge on Detection and
Classification of Acoustic Scenes and Events (DCASE 2019). A
general problem in acoustic scene classification task is audio
signal segment contains less effective information. In order to
further utilize features with less effective information to improve
classification accuracy, we introduce the Squeeze-and-Excitation
unit to embed the backbone structure of Xception to recalibrate
the channel weights of feature maps in each block. In addition,
the recalibrated features of multiscale are fused and finally fed
into the full connection layer to get more useful information.
Furthermore, we introduce Mixup method to augment the data in
training stage to reduce the degree of over-fitting of network.
The proposed method attains a recognition accuracy of 77.5%,
which is 13% higher compared to the baseline system of the
DCASE 2019 Acoustic Scenes Classification task.

Index Terms— acoustic scene classification, multi-
scale features fusion, recalibrated features, mixup

1. INTRODUCTION

Acoustic scene carries exceedingly complex and diverse
sounds information, and the background sounds of the target
scene contain a large number of random and complex sounds,
which makes the acoustic scene classification (ASC) task
extremely challenging but quite meaningful. DCASE 2019
challenge organized by IEEE Audio and Acoustic Signal
Processing (AASP) Technical Committee is one of the large-
scale challenges for ASC research, which provides an excellent
platform for ASC task to promote its development [1].

DCASE 2019 task 1 is fundamentally an extended version
of the previous DCASE 2018 ASC task, providing a larger
amount of data for the same scenes. Many of participants applied
a deep learning approach such as convolutional neural networks
(CNNs) [2, 3, 4, 5] and recurrent neural networks (RNNs) [6, 7],
and top ranks were achieved by CNNs in DCASE 2017 and
2018’s submitted algorithms. On the contrary, top ranks were
achieved by non-negative matrix factorization [8], which are
comparatively traditional dictionary learning methods in the
Challenge of DCSE 2016. And most of the submitted algorithms
in challenge of DCASE 2018 used log-Mel spectrograms, one of
the most popular handcrafted features. As we can see from the

has shown promising results.

With the rapid development of deep learning and continuous
performance breakthroughs of CNNs, approaches based on
CNNs which is widely being used for image processing has also
been applied for ASC [9]. In the past three years, challenges of
DCASE have received numerous approaches based on deep
learning.

The convolutional neural network extracts abstract features
by merging spatial information on a channel-by-channel basis
using local receptive fields [10]. It is much difficult to train a
performance-efficient network. On the one hand, from the
perspective of spatial dimension, for example, the Inception
structure [11] embeds multi-scale information and aggregates
features of different receptive fields to improve performance.
Based on Inception V3's improved network Xception [12][13], in
this paper, we improve the classification performance of the
network by combining feature maps of different scales as input to
the classifier. On the other hand, according to the relationship of
feature channels, Squeeze-and-Excitation Network (SENet) [14]
selectively enhances the informatizable features and compresses
useless features by using global information. On this basis, we
introduce the Squeeze-and-Excitation unit to embed the residual
structure of Xception, which can explicitly model the channel
correlation between convolution layer features to improve the
representation ability. In addition, deep neural networks have a
large number of model parameters, so that for data with few
samples or few effective information in the sample, which is
extremely easy to produce a over-fitting phenomenon. In order to
solve the problem, data augmentation is effective [15]. In this
paper, the Mixup [16] method was introduced to augment the
data, thereby reducing the degree of over-fitting of the model and
improving the generalization ability of the model.

The remainder of this paper is organized as follows. Section
2 explains details of the proposed system. Section 3 discusses the
experiments and results. Finally, the conclusion is provided in
Section 4.

2. METHOD

2.1. Neural Network Architecture

The baseline network of this work is Xception, which is an
improved network proposed by Google based on Inception V3.



Detection and Classification of Acoustic Scenes and Events 2019

Challenge

128x431x3

log-Mel Spectrogram

Conv 32, 3x3, stride=2x2

Conv 64, 3x3 /

! [
|\\ Blockl, 128, 3x3
| \ stride=2x2
SeparableConv 728, 3x3 | \ Block2, 256, 3x3

| \ stride=2x2
Conv 1x1 Squeeze& ||
Block3, 728, 3x3
stride=2x2 SeparableConv 728, 3x3 Excitation \\ stride=2x2

|
B

| | /1[Global Pooling !

/| [ SeparableConv 128,3x3 | /0 !

/ /i FC il

|| Conv 1x1 Squeeze& | il

\ | stride=2x2 SeparableConv 128, 3x3 Excitation | il

Vo T \ e |

v ) Vi il

1 \|[Sigmoid ],

\\ I [ MaxPooling 3x3, stride=2x2 | S ‘:
|

\ |

\| |

- - - ]

/| stride=2x2

/| Block12, 728, 1024,3x3

|
|\ Blockd - Blocki1
SeparableConv 728, 3x3 : /| 728, 3x3
A
|
|
|

/z ;
Repeated 8 times

SeparableConv 1536, 3x3

SeparableConv 2048, 3x3

GlobalAveragePooling

| softVax

Figure 1: The overall architecture of the network. The intermediate structure is a backbone network containing 12 blocks, where
Block4 to Block11 are the same Block, and the rest are similar Blocks. The structure on the left is the detail of Block4, and the
structure on the right is the detail of Block1 (the green part is the detail of the SE module), the red connection part in the figure is

the SE module introduced in this paper.

Its main improvement is to replace the convolution operation in
the original Inception V3 with depthwise separable convolution,
and add a residual connection mechanism to the model to speed
up the convergence of the model.

In this paper, the SE module is added to Xception to enable
the network to automatically acquire the importance of each
feature channel through training. Figure 1 shows the overall
network architecture. There are 12 blocks in the backbone
network, each of which contains similar convolution and pooling
operations. We describe the different Blocks in detail. The
connection marked red in the enlarged Block structure is the SE
module we introduced. The details of the SE module are further
explained in the right enlarged Block structure. We add the SE
module in front of the Maxpooling layer of each block in
Xception, and the result is added to the output of the residual
connection and then used as the input to the next block.

2.2. Spectrogram Extraction

Effective feature extraction is the basis of improving the
accuracy of acoustic scene classification. Subtask 1A of DCASE
2019 Challenge provides data that is stereo, 48kHZ. The
commonly used Python toolkit for feature processing, such as
Librosa, defaults to using mono-channel data with a sampling
rate of 22.05 kHz. In this paper, the sampling rate of the original
audio signal is set to 44.1 kHz, and the log-Mel spectrograms are
extracted from the two channels respectively, then the average
values of the two channels are obtained. Finally, the three
spectrograms are stacked into three-channel data. Figure 2 shows
the feature extraction method used in this paper.

The sound in the acoustic scene is a random non-stationary
signal. It is generally considered that the sound signal is a
stationary signal within 20ms-30ms. Therefore, when the feature

is extracted, the hop-length is set to 1024, the sampling rate is
44.1kHZ, the number of STFT points is 4096. and the Mel filters
is 128, which results in a log-Mel Spectrogram size of (128, 443).

Audio input

Model input

log-Mel spectrograms

Figure 2: Illustration of log-Mel spectrogram for network input.

2.3. Multiple Scale Feature

In the acoustic scene classification task, the collected audio
data is cut for equal duration, generally according to the standard
of 5s or 10s per segment, and the audio segment of the dataset
provided by subtask 1A is 10 seconds. The clipped audio clip
may contain only a few target sounds, so the features extracted
from the audio clip contain only a small amount of valid
information. In order to make better use of the information in the
features, we concat the features of several different scales and
input them into the classifier through feature fusion, so that we
can make more effective use of different layer features with
different information to compensate the disadvantage that the
input feature has less effective information.
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Specifically, we connect the output of Block3, the output of
Blockl11 and the input of MaxPooling layer, and then input the
feature vectors to the full connection layers. This simple and
effective operation improves the classification results of the
model by combining the features of different scales, but it does
not increase too much computational cost.

3. EXPERIMENTAL SETTINGS AND RESULTS

3.1. Dataset

The dataset for Subtask 1A is the TAU Urban Acoustic
Scenes 2019 dataset, which extends the TUT Urban Acoustic
Scenes 2018 dataset [17] with other 6 cities to a total of 12 large
European cities. This subtask is concerned with the basic
problem of acoustic scene classification, in which all available
data (development and evaluation) are recorded with the same
device, in this case device A. The dataset consists of 10-seconds
audio segments from 10 acoustic scenes, each acoustic scene has
1440 10-second segments (48 kHz / 24bit / stereo, 240 minutes
of audio).

The dataset was recorded in 12 large European cities. The
development dataset contains audio material from 10 cities,
whereas the evaluation dataset contains data from all 12 cities.
The dataset is perfectly balanced at acoustic scene level, with
very slight differences in the number of segments from each city.

3.2. Common Experimental Settings

The preprocessing and feature extraction of raw audio in
this article relies on LIBROSA, a powerful audio processing
python toolkit. And all experiments were completed in the
PYTORCH environment of the Ubuntu 16.04 system. .

Our network is trained for 80 epochs in batches of 16
samples by optimizing the categorical cross-entropy and
stochastic gradient descent (SGD) with Nesterov momentum,
and we apply 40% dropout to the full connection layers. The
learning rate, mini-batch size, and decay were set to 0.0001, 16,
and 0.0001, respectively. The strategy of cosine annealing is
used in training, which is one cycle for every 20 epochs with
initial learning rate of 0.0001, and the learning rate decreases
twice in each cycle. And we use Mixup method with a = 0.4 to
augment the data.

3.3. Experiment Results

The class-wise accuracy of the submitted method is
summarized in Table 1. In the challenge of DCASE 2019, we
only submitted the results of subtask A of task 1. As can be seen
from the table, the classification results of our method are better
than those of the official baseline model in all scenarios. The
results of our method were obtained on the TAU Urban Acoustic
Scenes 2019 development dataset, and the result on the official
leaderboard dataset was 0.775.

The confusion matrix of submitted model result is presented
in Fig. 4. The labels of the X-axis (or Y-axis) in the confusion
matrix represent "Airport", "Shopping mall", "Metro station",
"Public_square", "Street_traffic", "Tram", "Bus", "Metro", "Park"
and "Street_pedestrian" from top to bottom (or left to right). And
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it can be observed that the confusion is relatively focused in the
Metro and Tram, park, Airport and Shopping mall.

Table 1: The class-wise accuracy of the submitted method
outperformed the baseline of the development set.

Subtask A Accuracy(%)

Scene class

Baseline Our method
Airport 0.484 0.734
Bus 0.623 0.8482
Metro 0.651 0.7159
Metro_station 0.545 0.8368
Park 0.831 0.93
Public_square 0.407 0.6744
Shopping_mall 0.594 0.6848
Street_pedestrian 0.609 0.8368
Street_traffic 0.867 0.8905
Tram 0.64 0.8234
Average 0.6251(+/- 0.14) 0.7964(+/- 0.09 )
Ap{309 71 32 0 0 O 3 0 0 6 [ 350
sm{48 302 57 4 0 0 0O 0 7 23 200
Mes{ 7 23 364 4 0 10 6 14 2 5
Ps1 0 1 13 261 24 2 0 0 34 52 220
% st{0 0 0 17 358 0 0 1 15 11 - 200
g TT{0 O 4 0 0 35 43 30 0 0
= - 150
Buf 0 0 1 0 0 48 352 13 1 0
Me{2 ©0 16 0 2 8 18 310 0 1 100
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Figure 4: Confusion matrix of the submitted model of the
development set. X-axis indicates the predicted label and Y-axis
indicates the true label.

The confusion matrix of submitted model result is presented
in Fig. 4. The labels of the X-axis (or Y-axis) in the confusion
matrix represent "Airport", "Shopping mall", "Metro_station",
"Public_square", "Street_traffic", "Tram", "Bus", "Metro", "Park"
and "Street pedestrian" from top to bottom (or left to right). And
it can be observed that the confusion is relatively focused in the
Metro and Tram, park, Airport and Shopping mall.

The same experiment settings from development set
for the evaluation set are used. For the final submission,
we submitted two different results. We used the model
described in this paper for submission 1, and a voting rule
is utilized for decision fusion of three different models for
submission 2.
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4. CONCLUSIONS

In this paper, we presented a useful model using Squeeze-and-
Excitation unit and multi-scale feature fusion method developed
for the DCASE Challenge 2019. We have addressed task 1A -
Acoustic Scene Classification and have outperformed the
baseline accuracy by 13% using our method. Multichannel log-
Mel spectrograms are used as input of the model, and Mixup
method is used for data augmentation in our work.

In future work, we try to test our method over a wide range
of different acoustic classification tasks. We also want to collect
further data from social multimedia to train the network with
more real life audio recordings. Finally we intend to work on
bioacoustic recognition, such as bird sound detection and
recognition. Maybe our method is not suitable for these tasks, but
the rapid development of deep neural network provides us with
very good tools in these fields.
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