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ABSTRACT

In this technical report, we describe in detail the system we submitted
to DCASE2019 task 4: sound event detection (SED) in domestic en-
vironments. We employ a convolutional neural network (CNN) with
an embedding-level attention pooling module to carry out weakly-
supvised learning. By considering the interference caused by the
co-occurrence of multiple events in the unbalanced dataset, we com-
bine the model with the disentangled feature. To take advantage of
the unlabeled data, we adopt guided learning for semi-supervised
learning. A group of median filters with adaptive window sizes is
utilized in post-processing of frame-level probabilities output by the
model. We also analyze the effect of the synthetic data and finally
achieve an F-measure of 45.43% on the validation set.

Index Terms— Guided learning, disentangled feature, weakly
supervised learning, semi-supervised learning, attention

1. INTRODUCTION

DCASE2019 task 4 is the follow-up to DCASE2018 task 4, which
aims at exploring the possibility of the large-scale detection of sound
events using weakly labeled data (without timestamps) and unla-
beled data. Different from DCASE2018 task 4, DCASE2019 task 4
introduces an additional strongly annotated synthetic training set.

Sound event detection (SED) consists in recognizing the pres-
ence of sound events in the segment of audio and detecting their
onset as well as offset. Due to the high cost of manually labeling
data, it is essential to efficiently utilize weakly-labeled data and un-
labeled data. Simultaneously, the different physical characteristics
of events (such as different duration) and the unbalance of the avail-
able training set also increases the difficulty of polyphonic SED in
domestic environments. For DCASE2019 task4, there are 5 issues
to be resolved:

1) How to learn efficiently with weakly-labeled data?
2) How to learn efficiently with unbalanced training set?
3) How to combine weakly-supervised learning with semi-

supervised learning efficiently using weakly-labeled data and
unlabeled data?

4) Does the strongly annotated synthetic training set help?
5) How to design a better post-processing method to detect more

accurate boundaries according to the characteristics of each
event category?

In this technical report, we present a system to solve all these

five issues. For issue 1 and 2, we utilize convolutional neural net-
work (CNN) with the embedding-level attention pooling module
and disentangled feature [1] to solve them. For issue 3, we adopt a
semi-supervised learning method named Guided Learning [2]. For
issue 4, according to varied duration of different event categories,
we employ a group of median filters with adaptive window sizes in
the post-processing of output probabilities of the model. For issue
5, we simply regard the strongly annotated synthetic training set
as a weakly annotated training set and conduct a series of ablation
experiments to explore its effects on weakly-supervised learning and
unsupervised learning separately.

2. METHOD

In this section, we discuss the solution for issue 1 in Section 2.1,
solution for issue 2 in Section 2.2 and solution for issue 3 in Sec-
tion 2.3.

2.1. A CNN model with the embedding-level attention pooling
module

As shown in Figure 1a, the model we employ comprises 3 parts:
a feature encoder, an embedding-level attention pooling module
and a classifier. The feature encoder encodes the input feature of
an audio clip into high-level feature representations. Assuming
that there are C event categories to detect, then the embedding-
level attention pooling module integrates these high-level feature
representations into C contextual representations. Eventually, the
clip-level probabilities can be obtained by passing this C contextual
representations through the classifier.

As shown in Figure 1b, the feature encoder we employs is com-
posed of a Batch normalization layer [3], 3 Max pooling layers and 3
CNN blocks, each of which consists of a CNN layer, a Batch normal-
ization layer and a ReLU activation layer as shown in Figure 1c. And
the classifier for each contextual representation is a fully-connected
layer with a Sigmoid activation layer.

The ability of this model to carry out weakly-supervised learning
attributes to its embedding-level attention pooling module. Let
x = {x1, ..., xT } be the high-level feature representations generated
by the feature encoder and y = {y1, ..., yC} (yc ∈ {0, 1}) be the
groundtruth, where T denotes the number of total frames of the
high-level feature representations.

Then for each category c, the embedding-level attention pooling
gives different weights ac = {ac1, ..., acT } to the corresponding xt
in x. Then the contextual representation h = {h1, h2, ..., hC} can



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

Feature encoder

Classifier

High-level feature 

representation

Bag-level 

probability

Embedding-level

pooling module

Contextual 

representation

(a) Model framework

Batch normalization

CNN block

Max pooling

attention pooling

Dense

log-mel
spectrogram 

CNN block

Max pooling

CNN block

Max pooling

audio 
tagging

160 (5,5)

(1,4)

160 (5,5)

(1,4)

160 (3,3)

(1,4)

10

event detection

(b) Detailed model architecture

CNN block

CNN

Batch normalization

Activation: ReLU

(c) CNN block

Figure 1: CNN model with the embedding-level attention pooling
module.

be obtained by the following way:

hc =
∑
t

act · xt (1)

Such an ac enables the model to treat each frame differently.
Important frame xt in x with larger act contributes more to hc.
The embedding-level attention pooling module generates ac by the
following way:

act =
exp

(
(wTc xt + bc)/d

)∑
k exp ((wTc xk + bc)/d)

(2)

where d is equal with the dimension of x, wTc is a trainable vector,
and bc is the trainable bias.

importantly, act possess the ability to indicate key frames of an
audio and is able to generate frame-level probabilities as explained
in [1]:

p̂ (yc | xt) = σ
(
wTc xt + bc

)
(3)

where σ is Sigmoid function.
Assuming that P̂ (yc | x) is the clip-level probabilities for event

category c, then the clip-level prediction is:

φc (x) =

{
1, P̂ (1 | x) ≥ α
0, otherwise

(4)

The frame-level prediction is:

ϕc (x, t) =

{
1, p̂ (1 | xt) · φc (x) ≥ α
0, otherwise

(5)

Without loss of generality, we set α = 0.5 in our work.
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Figure 2: The model architecture of the PT-model.

2.2. Disentangled feature

We take disentangled feature (DF) [1], which re-models the high-
level feature subspace of each event category according to the prior
information without pre-training, to mitigate the effect of the inter-
ference caused by the co-occurrence multiple events.

Assuming that χd (x ⊂ χd) is a d-dimensional space generated
by the feature encoder and ß = {e1, e2, ..., ed} is an orthogonal
basis of χd where the element of ei in ith dimensional is 1. DF
selects specific bases of χd to construct a specific subspace for each
category and the basis of the re-modeled feature space χ

′
c of category

c is
ß
′
c = {e1, e2, ..., ekc} (6)

kc = d((1−m) · fc +m) · de (7)

fc =

C∑
i

ri ·Nci
R

(8)

R = max
c

C∑
i=1

ri ·Nci (9)

where m is a constant to avoid too-small kc and Nci is the number
of clips containing i categories including category c in the training
set. The constant coefficient ri denotes the importance these clips:

ri =

{
1, i = 1
0, otherwise

(10)

2.3. Guided learning with a more professional teacher

To combine weakly-supervised learning with semi-supervised learn-
ing, we utilize Guide Learning (GL) proposed in [2] with a more
professional teacher model (PT-model) to guide a more promising
student model (PS-model).

The architecture of the PS-model is consistent with the model
described in the former two sections and we show that of the PT-
model in Figure 2. The CNN feature encoder of the PT-model is
considered to be better designed than the PS-model on the audio
tagging performance with larger sequential sampling size and less
trainable parameters. This is because that the larger sequential sam-
pling size allows the CNN feature encoder of the PT-model to have
a larger receptive field followed by better exploitation of contextual
information.

However, the larger sequential sampling size also disables the
PT-model to see finer information due to the compress of sequential
information. Therefore, the PS-model is designed with smaller
sequential sampling size to see finer information and then achieves
better frame-level prediction.
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Algorithm 1 Guided learning pseudocode.

Require: xk = training input with index k
Require: L = set of weakly-labeled training input
Require: U = set of unlabeled training input
Require: yk = label of weakly-labeled input xk ∈ L
Require: Sθ (x) = neural network of the PS-model with trainable

parameters θ
Require: Tθ′ (x) = neural network of the PT-model model with

trainable parameters θ
′

Require: g (x) = stochastic input augmentation function
Require: J (t, z) = loss function
Require: φ(z) = prediction generation function
Ensure: θ, θ

′

for i = 1→ num epoches do
if i > start epoch then
a← 1− γi−start epoch . calculate the weight of
unsupervised loss of the PT-model

else
a← 0

end if
for each minibatch ß do
sk ← Sθ (xk ∈ ß) . the coarse-level predicted probability
of the PS-model
tk ← Tθ′ (g(xk) ∈ ß) . the coarse-level predicted
probability of the PT-model
s̃k ← φ (sk) . convert the predicted probability into 0-1
prediction
t̃k ← φ (tk)
if xk ∈ L then
loss← 1

|ß|

{∑
xk∈J∩ß [J (yk, sk) + J (yk, tk)]

}
.

supervised loss
end if
if xk ∈ U then
loss← 1

|ß|

{∑
xk∈U∩ß

[
J
(
t̃k, sk

)
+ a · J (s̃k, tk)

]}
.

unsupervised loss
end if
update θ, θ

′
. update network parameters

end for
end for

This gap between their ability makes it possible to optimize the
PS-model with the guide of the PT-model using unlabeled data. As
shown in Algorithm 1, an end-to-end process is employed to train
these two models.

3. EXPERIMENTS

3.1. DCASE 2019 Task 4 Dataset

The dataset of DCASE2019 task 4 is divided into 4 subsets: the
weakly annotated training set, the unlabeled training set, the strongly
annotated validation set and the strongly annotated synthetic training
set. Each 10-second audio clip in the dataset contains one or more
(or None) of 10 events. We integrate the weakly annotated training
set, the unlabeled training set and the strongly annotated synthetic
training set (actually we only use weakly labels during training) into
a training set and take the validation set as our validation set.

Table 1: The dimension of the disentangled feature when m = 0.04
and the window sizes of the median filters when β = 1

3
.

Event DF Window size
dimension (frame)

Alarm/bell/ringing 137 17
Blender 94 42

Cat 134 17
Dishes 69 9
Dog 132 16

Electric shaver/toothbrush 76 74
Frying 34 85

Running water 160 64
Speech 30 18

Vacuum cleaner 113 87

3.2. Feature exaction

We produce 64 log mel-bank magnitudes which are extracted from 40
ms frames with 50% overlap (nFFT = 2048) using librosa package
[4]. All the 10-second audio clips are extracted to feature vectors
with 500 frames.

3.3. Model architecture

The constant factor dc for the embedding-level attention pooling
module is the same as the dimension of disentangled feature for
event category c and we take n = 1,m = 0.04 for disentangled
feature. The dimension of the disentangled feature per category is
shown in Table 1. The PS-model has about 2.6 times the number
of trainable parameters as the PT-model. The start epoch for GL
is set to 5. The PS-model with only weakly-supervised learning is
named ATP-DF and the co-teaching of the PS-model and the PT-
model is named GL-α-PT in the performance report, where α is a
hyper-parameter for GL discussed in Algorithm 1.

3.4. Adaptive post-processing

The median filter is utilized for post-processing. Instead of deter-
mining the window size of the median filter empirically, we adopt
a group of median filters with adaptive window sizes for different
event categories by the following formulation based on the varying
length of different event categories in real life:

Swin = durationave · β (11)

We take β = 1
3

in our experiments and the adaptive window sizes
for different event categories are shown in Table 1. All the frame-
level probabilities output by the network are smoothed by a group of
median filters with these adaptive window sizes. After smoothed, the
probabilities are converted into the 0-1 prediction with a threshold of
0.5. Then the operation of smoothing is repeated again on the final
frame-level prediction.

3.5. Training

The Adam optimizer [5] with learning rate of 0.0018 and mini-batch
of 64 10-second patches is utilized to train models in the experiments.
The learning rate is reduced by 20% per 10 epochs. If there is no
more improvement on clip-level macro F1 within 20 epochs, the
training will early stop and the model with the best performance will
be kept for prediction. All the experiments are repeated 30 times
and we take the average result as the final result.
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Table 2: The performance of models

Model Macro F1 (%)
Event-based Segment-based

baseline 23.7 55.2

without the synthetic training set
ATP-DF 25.95± 3.22 56.82± 1.34
GL-1-PT 35.19± 3.86 61.14± 3.14
GL-0.996-PT 36.50± 3.71 62.03± 3.25
GL-0.99-PT 36.21± 4.63 61.25± 2.77
GL-0.98-PT 33.78± 2.95 57.54± 3.42

with the synthetic training set
ATP-DF 21.65± 2.55 57.02± 1.93
GL-1-PT 41.03± 2.98 65.58± 2.84
GL-0.996-PT 42.02± 3.29 66.62± 1.82
GL-0.99-PT 42.32± 2.21 65.78± 2.63
GL-0.98-PT 41.16± 2.42 63.89± 2.20

Table 3: The performance of the models (with the synthetic training
set) without disentangled feature (m = 1).

Model Macro F1 (%)
Event-based Segment-based

ATP 21.25± 2.13 56.22± 2.52
GL-1-PT 38.75± 2.42 65.23± 3.44
GL-0.996-PT 40.49± 2.30 66.16± 1.50
GL-0.99-PT 40.03± 3.38 65.14± 2.12
GL-0.98-PT 39.52± 3.27 63.46± 2.33

3.6. Results

As shown in Table 2, GL-0.99-PT (with synthetic set) achieves the
best average performance on event-based macro F1. As shown in
Table 5, the ensemble of the models (GL-0.99-PT) from top2 to top6
achieves the best performance, improving the performance by 21.73
percentage points from the baseline. We submitted the top1 model,
the top2 model, the ensemble of the models from top1 to top6 and
the ensemble of the models from top2 to top6 to the challenge.

3.6.1. The effect of semi-supervised learning

As shown in Table 2, all the models with semi-supervised learning
outperform those only with weakly-supervised learning significantly
and the model with the best average performance improves the
performance by 20.67 percentage points from the weakly-supervised
only method.

3.6.2. The effect of disentangled feature

As shown in Table 3, the performance of all the models without dis-
entangled feature is poorer than those which has. The disentangled
feature improves the event-based macro F1 performance about 1-3
percentage points.

3.6.3. The effect of the adaptive post-processing

As shown in Table 4, instead of using a group of median filters with
adaptive window sizes, we pick a fixed window size of 27 for the
median filter, which is a relatively superior value empirically. In this
case, the performance of all the models (with the synthetic training

Table 4: The performance of the models (with the synthetic training
set) smoothed by the median filter with a fixed window size of 27.

Model Macro F1 (%)
Event-based Segment-based

ATP-DF 20.87± 2.04 56.95± 1.88
GL-1-PT 37.46± 3.72 65.07± 2.48
GL-0.996-PT 38.58± 3.98 65.99± 2.24
GL-0.99-PT 38.99± 2.15 65.21± 2.31
GL-0.98-PT 37.64± 2.58 63.19± 2.12

Table 5: The performance of top1 to top2 and the ensemble of
models.

Model Macro F1 (%)
Event-based Segment-based

Top1 44.47 66.74
Top2 44.02 67.07
Ensemble (Top1-6) 45.28 69.06
Ensemble (Top2-6) 45.43 69.02

set) is relatively poor, which demonstrates the effectiveness of the
adaptive post-processing.

3.6.4. Does the synthetic training set help?

As shown in Table 2, when learning only with weakly labeled data,
the synthetic training set not only does not help improve the re-
sults but also brings negative effects. But when combining weakly-
supervised learning with semi-supervised learning, the synthetic
training set contributes a lot so that the performance is raised by
about 5-8 percentage points. We argue that the model tends to be
overfitting in the synthetic training set and have difficulty in recog-
nizing the audio clips from the real-life recording since the number
of audio clips in the synthetic training set is almost 1.3 times as
much as that in the weakly annotated training set. However, the large
scale of unlabeled data complements this weakness and enable the
synthetic training set to play a positive role during training.

4. CONCLUSION

In this technical report, we present a system for DCASE2019
task 4. We release the implement to reproduce our system at
https://github.com/Kikyo-16/Sound event detection. We utilized
a CNN model with an embedding-level attention pooling module to
carry out weakly-supervised learning and guided learning to carry
out semi-supervised learning. The disentangled feature is employed
to raise the performance of the model by reducing the interference
caused by the co-occurrence of multiple events in the unbalanced
data set. In addition, the adaptive post-processing is proposed to
get more accurate detection boundaries. As a result, we achieve
45.43%on the validation set, improving the performance by 21.73%
from the baseline.
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