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ABSTRACT 

This technical report presents our approach for the acoustic scene 

classification of DCASE2019 task1a. Compared to traditional au-

dio features such as Mel-frequency Cepstral Coefficients (MFCC) 

and Constant-Q Transform (CQT), we choose Deep Scattering 

Spectra (DSS) features which are more suitable for characterizing 

acoustic scenes. DSS is a good way to preserve high frequency 

information. Based on DSS features, we choose a network model 

of Convolutional Neural Network (CNN) and Gated Recurrent 

Unit (GRU) to classify acoustic scenes. The experimental results 

show that our approach increase the classification accuracy from 

62.5% (DCASE2019 baseline) to 85% . 

Index Terms— DCASE2019, acoustic scene classifi-

cation, Deep Scattering Spectra, convolutional neural net-

work. 

1. INTRODUCTION 

Perceiving and understanding sound signals is an important re-

search direction in the field of artificial intelligence. The sound 

signal carries a lot of information, such as the environment in 

which the sound is located. When we listen to a piece of audio, we 

often ignore its scene. So, to have a better understand of the acous-

tic scene is important. At present, there are a large number of 

scholars in this area of research with good progress. DCASE's re-

sults from previous years also show potential. [1,2] 

In DCASE2019, the goal is to classify a test recording into one of 

the provided predefined classes that characterizes the environment 

in which it was recorded.  

Acoustic features play an important role in the classification of 

acoustic scenes. A good acoustic feature selection can be a better 

characterization of the characteristics of the sound, which can help 

to achieve better classification results. The audio features used in 

the existing scene recognition methods are mostly based on the 

cepstrum domain MFCC, in addition to other frequency domain 

and time domain features. But they are statistical values either 

short-term features or of long-term features. The short-term fea-

ture cannot completely describe the audio scene, while the long-

term statistical feature will lose the local structural information of 

the scene signal, which will ultimately affect the recognition effect 

of the audio scene. Deep scattering networks (DSN) have recently 

been introduced to solve this challenge. DSNs can generate a con-

tractive representation of a raw signal, doing like this can preserves 

signal energy, while ensuring time-shift invariant and stability to 

time deformations. The representation generated by these net-

works id called Deep Scattering Spectra (DSS). 

In this report, we introduce the framework we used. From the ex-

perimental results, we explored the possibility of combine DSS 

features with CNN for acoustic scene classification. 

2. DEEP SCATTERING SPECTRA 

Audio feature should be time-invariant and stable to time defor-

mation. The former means that that the audio segment always be-

longs to the same class even if it is shifted by a constant in time. 

Stability to time warping means that small deformation in the raw 

signal leads to small modification in audio feature. Mostly owing 

to its properties of group invariance and stability to deformations, 

DSS has shown to achieve state-of-the art results in the challenges 

of music genre recognition, image, texture classification, and fetal 

heart rate characterization. Its core feature relies on the construc-

tion of a scattering network, i.e. a stack of signal processing layers 

of increasing width. Each layer consists in the association of a 

linear filter bank with a non-linear operator, namely the complex 

modulus. The scattering transform of an input signal x is defined 

as the set of all paths that x might take from layer to layer. In this 

sense, the architecture of a scattering network closely resembles a 

convolutional deep network.[3,4] 

2.1. Time Scattering 

As shown in [5], log-mel features can be approximated by convo-

luing in time a signal x with a wavelet filterbank. This feature 

representation can be written as 

𝐹1 = |𝑥∗𝜑𝜆1|
∗𝜙(𝑡)                                        （1） 

where 𝜑𝜆1 denotes a wavelet filterbank and 𝜙(𝑡) denotes a low-

pass filter. While time averaging provides features which are lo-

cally invariant to small translations and distortions, it also leads 

to loss of higher-order information in the speech signal, such as 

attacks and bursts [5]. To recover this lost information another 

decomposition of the sub-band signals is performed using a sec-

ond wavelet filter-bank, denoted by 𝜑𝜆2, This second decompo-

sition captures the information in the sub-band signal, |𝑥∗𝜑𝜆1|, 
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left out by the averaging filter 𝜙(𝑡). The decomposed sub-band 

signals are denoted by 

𝐹2 = |𝑥∗𝜑𝜆1|
∗𝜑𝜆2                                               (2) 

are once again passed through the low-pass filter 𝜙(𝑡) to extract 

stable features. The second order scatter is computed using a con-

stant-Q filter-bank with Q = 1. Each of the decompositions can 

be written as 

𝐹3 = ||𝑥∗𝜑𝜆1|
∗𝜑𝜆2|

∗𝜙(𝑡)                                   (3) 

has a limited number of non-zero coefficients, due to the bandlim-

ited nature of the signals|𝑥∗𝜑𝜆1|. Typically, only first and sec-

ond order scatter is used for speech. Again, following the termi-

nology of [5], the second order scatter is referred to as 𝑆2. 
The above description is known as time-scatter, as the wavelet 

convolution is applied to the time domain signal only. 

2.2. Frequency Scatter 

Frequency scatter can be seen as a way of removing variability in 

the frequency signal, for example due to translations of formants 

created from different speaking styles. A very simple type of fre-

quency averaging is to apply a discrete cosine transform (DCT) to 

a log-mel representation and perform cepstral truncation, which is 

common when generating MFCCs. When applying frequency 

scatter in the DSS framework, the same time-scattering operation 

performed in time is now performed in the frequency domain on 

the 𝑆1 and 𝑆2 features. Specifically, frequency scattering features 

are created by iteratively applying wavelet trans-form and modu-

lus operators, followed by a low-pass filter to the time-scatter fea-

tures𝑆𝑖 , |𝑆𝑖
∗𝜑𝜆1

𝑓𝑟 |
∗

𝜙𝑓𝑟(𝑡). All frequency scattering features are 

produced using wavelets with Q = 1. Similar to [5], we only com-

pute first-order frequency scatter. 

2.3. Multi-Resolution Scatter 

The first-order time-scattering operating described in Section  

2.1, is performed using a wavelet with Q = 9. To capture different 

spectral and temporal dynamics, wavelets with different Q factors 

can be used, an operation known as multi-resolution time scatter. 

Frequency and second-order scatter are calculated on each first-

order time scatter S1 generated with filterbank Q. 

3. SYSTEM STRUCTURE 

CNN (the convolution neural network), has the characteristics of 

local connection and weight sharing, which greatly reduces the 

number of parameters, improves the training speed, and reduces 

over-fitting. Because of its good processing ability to high dimen-

sional array, CNN is widely used in speech recognition, image 

recognition and other fields. As for the acoustic scene classifica-

tion proposed in this competition, we decided to use CNN struc-

ture to build our neural network. The structure is shown in figure 

1. [6,7,8] 

 

Figure 1 System Structure 

Our neural network consists of one input layer, three layers of con-

volution, one layer of gated recurrent unit, one layer of full con-

nected and one layer of output. The input data is the 3d vector 

(2×563×59) obtained after the extraction of DSS features based on 

double channels. 

Based on previous experience, we choose DSS features with di-

mension of 2×563×59. Use two channels input to cover binaural 

representations. Maxpolling was used to reduce the number of pa-

rameters. Next layer we use GRU with 10×2 cells. And then it is 

compressed into a one-dimensional vector and connected with the 

full connected layer. The full connected layer adopts the 256-128-

31 hidden layer, and finally outputs a vector containing 10 dimen-

sions. 

4. RESULTS  

We test our system on the test set containing 2880 pieces of audio, 

which are divided from the whole dataset. Mean and standard de-

viation of the performance from these 10 independent trials are 

shown in the results tables. 

Table 1 Test Results 
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