
Detection and Classification of Acoustic Scenes and Events 2019 Challenge

SOUND EVENT LOCALIZATION AND DETECTION USING FOA DOMAIN SPATIAL
AUGMENTATION

Technical Report

Luca Mazzon1,2, Masahiro Yasuda1,∗, Yuma Koizumi1 and Noboru Harada1

1NTT Media Intelligence Laboratories, Tokyo, Japan
2University of Padova, Padua, Italy

ABSTRACT

This technical report describes the system participating to the
DCASE 2019, Task 3: Sound Event Localization and Detection
challenge. The system consists of a convolutional recurrent neural
network (CRNN) reinforced by a ResNet structure. A two-stage
training strategy with label masking is adopted. The main ad-
vancement of the proposed method is a data augmentation method
based on rotation in the first order Ambisonics (FOA) domain. The
proposed spatial augmentation enables us to augment direction of
arrival (DOA) labels without losing physical relationships between
steering vectors and observations. Evaluation results on devel-
opment dataset show that, even though the proposed method did
not use any ensemble method in this experiment, (i) the proposed
method outperformed a state-of-the-art system published before
the submission deadline and (ii) the DOA error has significantly
decreased: 2.73◦ better than the state-of-the-art system.

Index Terms— Sound event detection, direction of arrival esti-
mation, CRNN, first order Ambisonics, data augmentation

1. INTRODUCTION

Sound event detection and localization (SELD) is the joint task of
sound event detection (SED) and direction of arrival (DOA) esti-
mation. SED task consists in recognizing the presence of certain
sound classes in a potentially polyphonic audio recording, as well
as their onset and offset times. DOA estimation consists in esti-
mating azimuth and elevation angles of a sound source in an audio
recording. The joint task of SELD, thus, requires to recognize, at
each time frame, which sound classes are active and, for each of
them, estimating the spatial coordinates of the corresponding sound
source.

SELD is a challenge task of detection and classification of
acoustic scenes and events (DCASE) 2019 Challenge, Task 3:
Sound Event Localization and Detection [1]. The dataset and base-
line system for the task are described in details in [2]. This baseline
system was first introduced in [3] along an extensive study and
comparison between the existing baseline methods and in different
recording conditions. More recently, Cao et al. published a re-
newed SELD system [4] using a two-staged strategy, significantly
improving the scores of the baseline.

Our system is based on Cao et al.’s system [4]. The differ-
ences from [4] are (i) network architecture, (ii) data augmentation,
and (iii) ensemble methods, and these are describes in section 3.1,

∗The proposed system is the result of the conjunct work of L. Mazzon
and M. Yasuda, who worked together and evenly cooperated on the task.

3.2 and 3.3, respectively. The main advancement of the proposed
method is a data augmentation method based on rotation in the first
order Ambisonics (FOA) domain. The proposed spatial augmen-
tation enables us to augment DOA labels without losing physical
relationships between steering vectors and observations.

2. CONVENTIONAL METHOD

2.1. Problem setting

Let us define the SELD task. Here we define the STFT-spectrogram
of the m-th microphone as X(m) ∈ CF×T and the set of M mi-
crophones’ X(m) as X = {X(m)}Mm=1, where T and F are the
number of time-frames and frequency-bins, respectively. Given a
number C of target events, the SELD task can be defined as the es-
timation problem of the c-th event’s activity zc,t ∈ {0, 1}, azimuth
φc,t ∈ R[−π,π) and elevation θc,t ∈ R[−π/2,π/2] at time-frame t.
Thus, the goal of the SELD task is designing a function for accu-
rately estimating zc,t, φc,t, θc,t from X.

2.2. The baseline system

SELDnet [2], the baseline system of the task, is a deep-neural-
network (DNN)-based estimator of the target variables. The SELD-
net uses a convolutional recurrent neural network (CRNN) which
branches into two fully connected blocks, one with a sigmoid ac-
tivation function for classification-based estimation of SED labels
zc,t, one with a linear activation function for regression-based esti-
mation of DOA labels φc,t and θc,t. That is, the SED part outputs
a set of variables rc,t and then the presence probability of the c-th
event at time frame t is estimated by using the sigmoid function as
pc,t = p(zc,t|X) = sigmoid(rc,t). Finally, when pc,t exceeds the
pre-defined threshold 0 ≤ α ≤ 1, the system identifies the c-th
event as active at time frame t as

ẑc,t =

{
1 for pc,t > α

0 otherwise
. (1)

The acoustic features being used are magnitude and phase of the
spectrogram of the four channels of either the FOA or microphone
array dataset. Hereafter, we call these datasets FOA and MIC, re-
spectively.

2.3. Cao et al.’s system

The new system introduced by Cao et al. [4] is still a SELDnet as a
core structure but it introduced some key improvements. The first is
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Figure 1: Proposed Network based on [4]. Left and right figure shows overall network architecture and detail of ResNetBlock, respectively.
“Conv”, “BN”, and “Avepool” in right figure denotes convolutional layer, batch normalization, and average pooling, respectively.

on acoustic features. It uses the logmel magnitude spectrogram with
M = 96 mel bins and the generalized cross correlation phase trans-
form (GCC-PHAT) [5]. Since the logmel spectrum doesn’t carry
the phase information, which is important for DOA estimation, Cao
et al. use the GCC-PHAT as a set of additional acoustic features.

Another key idea in [4] is using a two-staged training strategy,
i.e. at first training only the SED branch of the network and in a sec-
ond stage transferring the parameters of the CNN blocks, responsi-
ble for computing high level features, to the DOA branch and train-
ing it separately. During training of the DOA branch, SED ground
truth labels are used to mask the estimated DOA labels. During in-
ference, SED and DOA are estimated by the two separately trained
branches and DOA estimated labels are masked by the estimated
SED labels. This strategy has the goal of simplifying the training
process while still keeping the advantages that SED features pro-
vide to the DOA estimation task. The CNN block architecture also
differs from the baseline system, especially in the 2x2 pooling layer
which shrinks the features along the time axis, with a subsequent
up-sampling at the end.

3. PROPOSED METHOD

The proposed system uses [4] as a benchmark. In the following sub-
sections, we’ll describe the differences between [4] and our system.

3.1. Network architecture

Figure 1 (left) illustrates the overall architecture of our system.
CNN blocks are capable of extracting high level features which
are good both for SED and DOAE task. Thus, our first improve-
ment has been adding an extra bi-directional gated recurrent unit
(Bi-GRU) layer between the CNN blocks and the final fully con-
nected layers, in order to allow the CNN blocks to keep this high
level of feature computation and to reinforce the interpolation ca-
pability from these features. However, increasing the complexity
of the model also implies two disadvantages: gradient vanishing
and overfitting. To avoid the first problem, we employ a ResNet
CNN structure [6] for each of the convolutional blocks, as shown
in Fig. 1 (right). To address the second problem, we use a new data
augmentation method which is described in the next section.

3.2. Data augmentation using FOA domain spatial augmenta-
tion

For improving the score we increased the domain representative-
ness of the dataset by using data augmentation. Data augmentation
has been a widely used and successful strategy for most of DCASE
challenge tasks [7–10] and other sound event detection tasks such
as anomaly detection in sounds [11, 12]. However, to the best of
the authors’ knowledge, no augmentation strategy exists for DOA
estimation. In the conjunct task of SED and DOA, there are some
critical aspects to consider. First of all, when augmenting data, both
SED and DOA information may be affected, thus respective labels
must be updated correctly. For example, mixup augmentation [14]
is a good strategy for conventional DCASE tasks. However, DOA
labels in the regression format cannot be mixed up effectively1. Am-
plitude modulation and phase shifting applied differently on chan-
nels affects DOA information in a hardly predictable way. To over-
come this problem, we propose a new augmentation strategy that
allows us to increase the number of direction of arrivals represented
in the dataset, as well as class-DOA combinations, while still be-
ing able to correctly compute the corresponding ground truth DOA
labels of the augmented data. To do this, we exploited the simple
equations describing the directional responses (steering vectors) of
FOA channels.

We recall that, as described in the task description, the refer-
ence system is right handed with x axis pointing forward, y axis
pointing leftwards and z axis pointing upwards, with azimuth an-
gle φ increasing counterclockwise from x if seen from above and
elevation angle θ increasing upwards from the horizontal plane xy.
Given this coordinate system, for a given azimuth angle φ and a
given elevation angle θ, the spatial frequency responses of the four
FOA channels are the following:

H1 (φ, θ, f) = 1,

H2 (φ, θ, f) =
√
3 ∗ sinφ ∗ cos θ,

H3 (φ, θ, f) =
√
3 ∗ sin θ,

H4 (φ, θ, f) =
√
3 ∗ cosφ ∗ cos θ,

(2)

where ∗ indicates multiplication. FOA channels correspond to the

1According to the original mixup strategy, labels are required to be in
one-hot vector encoding [14]
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Table 1: Sixteen patterns of simple spatial augmentation. X,Y, Z corresponds to channel H3, H4, H2, respectively.
φc,t − π/2 φc,t φc,t + π/2 φc,t + π

θc,t X ← Y, Y ← −X original X ← −Y, Y ← X X ← −X,Y ← −Y
−θc,t X ← Y, Y ← −X,Z ← −Z Z ← −Z X ← −Y, Y ← X,Z ← −Z X ← −X,Y ← −Y,Z ← −Z

−φc,t − π/2 −φc,t −φc,t + π/2 −φc,t + π
θc,t X ← Y, Y ← −X Y ← −Y X ← Y, Y ← X X ← −X
−θc,t X ← −Y, Y ← −X,Z ← −Z Y ← −Y,Z ← −Z X ← Y, Y ← X,Z ← −Z X ← −X,Z ← −Z

all-pass filtered source sound (W ), the front to back difference (X),
the left to right difference (Y ) and the up to down difference. We
note that H1 is the directional response corresponding to channel
W of FOA, H2 to channel Y , H3 to channel Z and H4 to channel
X , as they can be seen as the projections of the sound source on
the Cartesian axes. Given this nature of FOA, we consider that data
augmentation can be achieved by using a rotation matrix, like sug-
gested also in [13]. However, with a general transformation, there
is the possibility of augmented labels going out of the domain of
elevation angles defined for this task, i.e. [−40◦, 40◦]. In order not
to go out of range, we use only reflections for augmenting elevation,
while for azimuth we use all the combinations of φ, −φ and rota-
tions of +90◦, -90◦ and 180◦. In total, for each DOA, we obtain
16 combination of DOAs, that is the original one plus 15 new ones.
All patterns are listed in Table 1. Augmented positions are illus-
trated in Fig. 2. These are the most straightforward transformations
to compute, thus, for a simple implementation, we used only these
ones. For instance, a rotation of the azimuth angle of +90◦ and a
reflection on the xy plane, are described by the following changes
of variable: {

φ′ = φ+ π
2

θ′ = −θ
, (3)

which can than be substituted in (2) to obtain an expression of the
new spatial responses as functions of the original ones:

H ′1 (φ, θ, f) = H1 (φ, θ, f)

H ′2 (φ, θ, f) = H4 (φ, θ, f)

H ′3 (φ, θ, f) = −H3 (φ, θ, f)

H ′4 (φ, θ, f) = −H2 (φ, θ, f)

. (4)

In our system, which is based on Cao et al.’s system, which
loads the entire dataset on the initialization of the data generator,
we computed the augmented dataset in time domain and extracted
the features offline for each of the augmented waveforms. For mem-
ory limitations, all transformations are applied offline and then the
data generator chooses randomly between one of them at each iter-
ation. However, a better solution for memory management and for
being able to use more augmented data would be to compute the
augmentation online directly on the features, which is not always
feasible either for computational costs or for the complexity of the
features (e.g. GCC-PHAT).

3.3. Model ensemble

As an ensemble method, we used linear regression approach. Model
ensemble was processed for SED and DOA independently. Here-
after, we define N as the number of models for ensemble.

For SED ensemble, DNN outputs of each class were mixed be-
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Figure 2: Augmented positions of the source S. Coordinates φ and
θ are illustrated from an eagle eye view of the 3D space. For each
of them, there is one with elevation coordinate +θ and one with
elevation coordinate −θ. Azimuth coordinate φ and its negative
−φ are translated by π

2
, π and −π.

fore taking the sigmoid activation as

pc,t = sigmoid

(
N∑
n=1

wsed
c,nrc,t,n

)
, (5)

where wsed
c,n is the regression coefficient for c-th class and n-th

SELD model, and rc,t,n is rc,t of n-th SELD model. In our sub-
mission, wsed

c,n was trained to minimize the binary-cross-entropy.
For DOA ensemble, the output of azimuth and elevation of all

classes were calculated simultaneously using a large regression ma-
trixW doa ∈ R2C×2CN . Here we define dt,n = (φ>t,n,θ

>
t,n)
> as a

vector which denotes a set of estimated azimuth and elevation of all
classes by n-th SELD model. Then, the ensemble output of azimuth
and elevation is calculated as

dt =W
doa
(
d>t,1, ...,d

>
t,N

)>
. (6)

In our submission, W doa was trained to minimize masked mean-
absolute-error (MAE) used in Cao et al.’s system as

Ldoa =
1

Z

T∑
t=1

C∑
c=1

zc,t
(
|φc,t − φ̂c,t|+ |θc,t − θ̂c,t|

)
, (7)

where Z =
∑T
t=1

∑C
c=1 zc,t.
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Figure 3: System overview.

3.4. Variations of submitted system

Figure 3 shows 4 variations of our submission. In submission 1
and 2, N = 8 SELD models with different initial parameters were
trained using each of the 4 cross-validation patterns of the develop-
ment dataset. 4 of the 8 SELD models used MIC wav files, and the
others use FOA wav files which were augmented by FOA domain
spatial augmentation. Early stopping was adopted for SELD model
training using validation dataset, which was not used in SELD
model training. Then, linear regression-based ensembles were
adopted on the outputs of the 8 DNNs for each cross-validation
pattern, so that we obtained 4 SED/DOA outputs each correspond-
ing to a cross-validation pattern. Note that in submission 1 the
regression parameters were trained using the three training splits,
while in submission 2 the regression parameters were trained us-
ing the validation split. Finally, the final SED/DOA outputs were
calculated as the average over the 4 cross-validation patterns.

In submission 3, N = 8 SELD models with different initial
parameters were trained using all the wav files in the development
dataset. In the same manner of submission 1 and 2, 4 SELD mod-
els used MIC wav files and the others used FOA wav files, which
were augmented by FOA domain spatial augmentation. Then, a
regression-based ensemble was used for both SED and DOA out-
puts. Since this model was trained using all the wave files in the
development dataset, the final average-based ensemble used in sub-
mission 1 and 2 was not used. SED and DOA networks were trained
for 40 and 50 epochs, respectively.

In submission 4, only one SELD model was trained using all
the wav files in the development dataset. The input acoustic features
were calculated from FOA wav files which were augmented by FOA
domain spatial augmentation. In submission 4, we haven’t used any
ensemble method, and SED and DOA networks were trained for 40
and 50 epochs, respectively.

Table 2: Evaluation results on developement dataset. “ER”, “F”,
“DOA”, “FR”, and “SELD” and means error rate, F-score [16],
DOA error, Frame recall [17], and SELD score, respectively.

Name (split) ER F DOA FR SELD
Baseline (all) 0.350 0.800 30.8◦ 0.840 0.220
Cao (all) 0.167 0.909 9.85◦ 0.863 0.112
Ours (all) 0.166 0.907 7.12◦ 0.864 0.109
Ours (1) 0.143 0.918 7.05◦ 0.871 0.097
Ours (2) 0.166 0.911 6.98◦ 0.863 0.108
Ours (3) 0.146 0.919 7.20◦ 0.872 0.099
Ours (4) 0.209 0.880 7.24◦ 0.849 0.130

3.5. Hyperparameters

In all submissions, the sample rate of STFT is set to 32kHz. A 1024-
point Hanning window with a hop size of 320 points is utilized. The
number of mel-band filters and the number of delayed samples of
GCC-PHAT is set to M = 96. The audio clips are segmented to
have a fixed length of 2 seconds with a 1-second overlap for train-
ing. The Adam method [15] is used as optimizer, and the learning
rate is set to 0.001 for the first 30 epochs and is then decayed by
10% every epoch.

4. EXPERIMENTS

We evaluated the proposed method on the development dataset. To
fairly evaluate the accuracy on the development dataset, we trained
4 SELD models using the same training setting as [4], that is we
used 300 FOA wav files to train each SELD model and haven’t used
early stopping or ensemble methods. In this evaluation, FOA was
selected as input, and only one SELD model of SED and DOA net-
works were trained with 40 and 50 epochs, respectively.

Table 2 shows the evaluation results of the proposed method.
In Table 2, “Ours” denotes the proposed method, “Baseline” de-
notes the baseline system published by the task organizers [2] and
“Cao” denotes the system which is the benchmark system of the
proposed method [4], respectively. As we can see in the results,
in terms of SELD score, the proposed method outperformed con-
ventional methods published before the submission deadline. No-
tably, the DOA error was significantly decreased: 2.73◦ better than
Cao et al.’s system. We believe it is mainly due to the FOA do-
main spatial augmentation. As future work, we will try to confirm
the effectiveness of FOA domain spatial augmentation using several
neural-network architectures and more general formulations.

5. CONCLUSIONS

In this technical report, we described the system participating to the
DCASE challenge 2019 task 3. Our system is based on Cao et al.’s
system [4]. The differences from [4] were (i) network architecture,
(ii) data augmentation, and (iii) ensemble methods. The main ad-
vancement of the proposed method is a data augmentation method
based on rotation in the FOA domain. Evaluation results on devel-
opment dataset showed that even though the proposed method did
not use any ensemble method in this experiment, (i) the proposed
method outperformed a state-of-the-art system published before the
submission deadline, and (ii) the DOA error was significantly de-
creased: 2.73◦ better than the state-of-the-art system.
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