
Detection and Classification of Acoustic Scenes and Events 2019 Challenge

ACOUSTIC SCENE CLASSIFICATION USING DEEP RESIDUAL NETWORKS WITH LATE
FUSION OF SEPARATED HIGH AND LOW FREQUENCY PATHS

Technical Report

Mark D. McDonnell and Wei Gao

Computational Learning Systems Laboratory,
School of Information Technology and Mathematical Sciences,

University of South Australia, Mawson Lakes SA 5095, Australia

ABSTRACT

This technical report describes our approach to Tasks 1a, 1b and
1c in the 2019 DCASE acoustic scene classification challenge. Our
focus was on developing strong single models, without use of any
supplementary data. We investigated the use of a deep residual net-
work applied to log-mel spectrograms complemented by log-mel
deltas and delta-deltas. We designed the network to take into ac-
count that the temporal and frequency axes in spectrograms repre-
sent fundamentally different information. In particular, we used two
pathways in the residual network: one for high frequencies and one
for low frequencies, that were fused just two convolutional layers
prior to the network output.

Index Terms— deep residual network; log-mel spectrograms;
deltas and delta-deltas

1. INTRODUCTION

Task 1 in the 2019 DCASE Acoustic Scene Classification challenge
required entrants to design classifiers that predicted the origin of
each of many ten second recordings. The setup was similar to that
in 2018 [1]. Models were trained and validated using a development
set, and tested and evaluated on a leaderboard set and an evaluation
set. There were ten categories (see Section 4).

Task 1 was divided into three subtasks. In subtask 1a, the de-
velopment and evaluation data were both recorded by the same de-
vice, with stereo (left and right) channels, at 48 kHz. In subtask 1b
(‘mismatched recording devices’), the evaluation data was recorded
by different devices to the development data; both were recorded
using a single channel, at 44.1 kHz. In subtask 1c (‘open set’), an
additional 11-th class representing “unknown” was included in the
data. Like subtask 1b, subtask 1c used single channel recordings at
44.1 kHz, but unlike subtask 1b, recordings were all collected from
the same device used in development set.

Code for training our models and running trained models is at
https://github.com/McDonnell-Lab/DCASE2019-Task1 .

2. STRATEGY AND MODEL INNOVATIONS

Highest accuracy in previous approaches to scene classification
have arisen from treating spectrograms of acoustic scenes as though
they are images, and training deep Convolutional Neural Networks
(CNNs) on these spectrograms using best practise image classifica-
tion methods, e.g. [2–4]. We also adopt the use of a CNN applied
to spectrograms, but aim to improve on previous designs in several

ways described in this Section. We did not use any additional data
to that provided by the challenge organizers.

2.1. Acoustic feature extraction

Past entries into DCASE challenges have used a range of ap-
proaches to forming image-like spectrograms for CNN process-
ing. These have included log-mel spectrograms, MFCCs, percep-
tual weighted power spectrograms, CQT spectrograms and so forth.

Our approach was inspired by past work on automated phoneme
recognition using a CNN [5], that used log-mel energies, and addi-
tionally calculated deltas and delta-deltas from these, i.e. approxi-
mations to the first and second temporal derivatives of the spectrum.

For Tasks 1b and 1c, with raw data in mono, we therefore had
3 input channels to our CNN. For Task 1a, where there were left
and right channels, we calculated log-mel spectrograms and deltas
and delta-deltas for both, and consequently, the overall input to our
CNN had 6 channels. We did not attempt to add or subtract left and
right channels, since for an experiment without deltas and delta-
deltas we achieved almost identical results when using the left and
right channels as two independent CNN channels, compared with
instead adding and subtracting them. We also found no benefits
from decomposition into harmonic and percussive (HPSS) compo-
nents as used by some previous DCASE contest submissions [2].

Compared to log-mel spectrograms as the only input channels,
we observed improved error rates on the official DCASE 2019 de-
velopment validation split when using deltas and delta-deltas (see
Table 1).

2.2. CNN design

We note that spectrograms have characteristics different from im-
ages [6]. For example, one object placed behind another is entirely
occluded in a photograph, whereas sounds from two sources super-
impose such that frequency features in a spectrogram can arise from
a combination of the two sources. Another important difference is
that an object can appear anywhere in an image, and carry the same
meaning, whereas patterns of features at low frequencies may rep-
resent different physical origins from those at higher frequencies.
Consequently the time and frequency axes that comprise the two
axes of a spectrogram are not of the same nature as the two spatial
axes in an image. Thirdly, frequency features at any point in time
can be non-local, due, for example, to harmonics.

The second and third point leads us to design a CNN in which
the frequency and time axes are treated differently. The main devi-
ations from a standard deep CNNs are described in Section 3.



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

2.3. Aggressive regularization and data augmentation

We found significant levels of overfitting, i.e. the training loss and
error rate for our trained models applied to the training set were
close to zero for sufficiently large models. Therefore, we used sev-
eral forms of regularization and data augmentation.

Like many entries in previous DCASE challenges, we used
mixup augmentation [7], and like most deep CNNs for image clas-
sification, we used weight decay for all convolutional layers. We
also experimented with shift-and-crop augmentation, but found best
results when only relatively mild temporal cropping was used. Fi-
nally, we made use of a new approach from image classification
which is not in common practice, which was to add a form of regu-
larization where batch normalization layers did not have their offset
and scale parameters learned [8].

Coupled with using these approaches, we found it helpful to
train for a very large number of epochs (we used 510) in a warm-
restart learning-rate schedule [9].

3. METHODS

We used the same network architecture and training approach for all
of Tasks 1a, 1b and 1c, except for adjustments for the slower sample
rate in a single channel for Tasks 1b and 1c.

Details are as follows. All networks were trained using keras
(version 2.2.4) with a tensorflow (version 1.12.0) backend.

3.1. Acoustic file preprocessing

To calculate our log-mel energies, we used 2048 FFT points, the
original sampling rate of the acoustic files (48 KHz for Task 1a, 44.1
KHz for Tasks 1b and 1c), frequencies from 0 to half of the sampling
rate, a hop-length of 1024 samples, and the HTK formula to define
the mel scale [10]. Our implementation used python, and the Li-
bROSA library1. Our resulting spectrograms were of size 469 (Task
1a) or 431 (Tasks 1b and 1c) time samples, and 128 frequency bins.
We calculated the log-mel deltas and delta-deltas without padding,
which reduced the number of time samples to 461 (Task 1a) or 423
(Tasks 1b and 1c).

3.2. Splitting of high and low frequencies

The CNN we designed has two mostly parallel paths that combine
only using late fusion by concatenation of frequency axes, two con-
volutional layers before the network output. The overall network
input has 128 frequency dimensions, but these are immediately split
in the network such that dimensions 0 to 63 is processed by a resid-
ual network with 17 convolutional and dimensions 64 to 127 by
another. All kernels in these paths are 3 × 3. After these stacks,
each pathway is concatenated to form 128 frequency dimensions,
and then operated on by two 1×1 convolutional layers. The second
of these layers reduces to the number of classes (10 for Task 1a and
1b, and 11 for Task 1c). This is followed by a batch normalization
layer, a global average pooling layer, and softmax.

The idea with the two branches is that the frequency features to
be learned for high frequencies are likely to different to those for
low frequencies. Therefore, we hypothesise that better learning will
occur if convolutional kernels do not get get applied at all frequen-
cies in a spectrogram.

1https://librosa.github.io/librosa/

The final two 1 × 1 layers effectively act as a two layer non-
convolutional neural network that weights the contributions of each
channel in each branch for classification of the scene at each fre-
quency. In the temporal axis, the global average pooling layer works
like in a deep CNN for image classification: it equally weights many
globally processed “views” of the image. We discuss the frequency
axis in the next subsection.

3.3. No downsampling in frequency layers

The input to our network for training has 400 time samples (due to
random temporal cropping—see below) and 128 frequencies. Due
to the all-convolutional nature of the network, at inference time we
can use larger number of time samples, and use all 461 (Task 1a) or
431 (Tasks 1b and 1c) samples provided by our audio preprocessing.

In order to ensure the CNN can learn global temporal informa-
tion across all time samples, we use standard image classification
practise of regularly downsampling in time using stride 2 convolu-
tional layers. The principle is that an important cue could happen
with equal likelihood at any point in time in a 10 second sample,
just like objects in images can appear in any spatial location.

However, in the frequency axis we do not downsample. Conse-
quently, the number of frequency dimensions in the feature maps for
each path remains constant at 64 throughout the network. Hence, at
the point where the two branches are concatenated, each path has
processed a frequency-axis receptive field of 35 dimensions.

Consequently, the global average pooling layer does not merge
equal global “views” in the frequency axis, but instead averages
over different overlapping views spanning 35 dimensions, rather
than global views. We therefore investigated using a final layer with
learned weights for merging each frequency dimension, but found
better results wit global average pooling.

3.4. Other CNN design aspects

The residual network design is a pre-activation variety [8, 11],
where the input to each convolutional layer first is processed by a
batch normalization layer and then a ReLU activation. In the resid-
ual paths, when the number of channels needs to be increased before
summation of different paths, we used zero padding in the channel
dimension as in [8], rather than 1× 1 convolutions.

Using a technique introduced in [8], the very first layer of our
network was a batch normalization layer with learned offset and
scale parameters. This enabled us to avoid assumed forms of nor-
malization of the features passed into the network.

Overall, our networks had approximately 3.2 million trainable
parameters.

3.5. Regularization and data augmentation

We used the following:

• weight decay: we used an aggressively large value of 5×10−4

(i.e. 1× 10−3 when set in keras) on all convolutional layers.
• Not learning batch normalization scale and offset: it was

shown in [8] that for datasets and networks with significant
overfitting, turning off learning of batch normalization scale
and offset (except in the very first layer) has a regularization
effect resulting in improved test error rates on the CIFAR-100
benchmark. We used this approach here.

• Mixup and temporal crop augmentation: As found by oth-
ers in past DCASE challenges, we found it very useful to use



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

mixup augmentation, using the same approach as [2], with
α = 0.2. We additionally used crop augmentation in the tem-
poral axis: each of the two samples combined using mixup
were first cropped independently and randomly from 461 (Task
1a ) or 423 (Tasks 1b and 1c) dimensions down to 400.

3.6. Training

We used backpropagation and stochastic gradient descent, with a
batch size of 32, momentum of 0.9, and the cross-entropy loss func-
tion. Each network was trained for 510 epochs using a warm restart
learning rate schedule that resets the learning rate to its maximum
value of 0.1 after 2, 6, 14, 30, 126 and 254 epochs, and then decays
according to a cosine pattern to 1× 10−5. It was shown by [9] and
verified by [8] that this approach can provide improvements in ac-
curacy on image classification relative to using stepped schedules.

3.7. Inference

Due to their all convolutional nature, spectrograms of arbitrary du-
ration can be processed by our CNNs. At inference time, full-
duration spectrograms were operated on by our trained CNNs.

We did not use any inference-time processing in Tasks 1a and
1b. For task 1c, the ranking metric for the DCASE 2019 Chal-
lenge was weighted the accuracy on known classes and the accu-
racy on ‘unknown’ data equally. Consequently, at inference time
we weighted the softmax output for the unknown class by a factor
of 5 (determined using the development set validation data) before
applying the argmax operator to select the predicted class.

Past DCASE Challenges (and other machine learning contests)
tend to be won by ensembles combined using either simple aver-
aging, or by meta-learning approaches involving stacking. We did
not concentrate our efforts on this aspect, instead preferring to seek
the best single network we could. We investigated only simple en-
sembling by averaging the softmax output of models trained on all
development set data. We typically observed less than 1% improve-
ment on raw accuracy.

3.8. Validation

An official train/validation split of the DCASE development data
was provided for each subtask, roughly in a 70:30 ratio. We de-
signed and selected models using these splits and then retrained
each model using the entirety of the development data before run-
ning the models on leaderboard or evaluation data for submission.

4. RESULTS

This section contains results on the official contest validation splits
of the Task 1a, 1b and 1c development sets.

The DCASE 2019 Task 1 challenge is evaluated using accuracy
calculated as the average of the class-wise accuracy, also known as
‘balanced accuracy.’ Given the development set validation split has
unequal numbers within each class, this means balanced accuracy
is not exactly equal to the raw classification accuracy. However, to
indicate the value of using log-mel deltas and delta-deltas, Table 1
shows the raw accuracy for each task.

The per-class precision and recall, and the average over each
class, are shown in Tables 2, 3 and 4 for Tasks 1a, 1b and 1c respec-
tively. Confusion matrices are shown in Figures 1, 2 and 3.

Table 1: Raw accuracies.
Task No deltas Best single model

1a 81.4% 82.3%
1b (device A) 78.5% 80.0%

1b (device B and C) 62.5% 66.3%
1c (known classes) 82.3% 76.8%

1c (unknown) 59.0% 63.9%

5. DISCUSSION

For each of Tasks 1a, 1b and 1c, four submissions were permitted.
We submitted results for two single models, an ensemble formed by
averaging the raw predictions of these, and an ensemble formed by
averaging two independently trained copies of our best model.

5.1. Remarks on Task 1a

We observe that the per-class precision and recall for our best model
had no greater than a gap of 0.14, indicating the model is well-
balanced across all classes. Public square has the worst recall, and
shopping mall the worst precision.

5.2. Remarks on Task 1b

Our best model generalized to devices B and C well on some classes
but very poorly on some others. The main confusion cases are
airport being classified as shopping mall, tram as metro station
and public square as street traffic. In future work, inference-time
weightings for classes with low recall might enhance performance.

5.3. Remarks on Task 1c

The evaluation metric in Task 1c weights the accuracy (recall) for
the unknown class equally with the balanced accuracy for the ten
known classes. This encourages models that err on the side of pre-
dicting unknown, which for us resulted in a low precision for the
unknown class, and a relatively low recall for each of the known
classes, as shown in Table 4, and Figure 3.

Table 2: Task 1a, best single model.

Class Recall Precision

airport 0.74 0.81
bus 0.89 0.87

metro 0.82 0.82
metro station 0.81 0.82

park 0.91 0.92
public square 0.70 0.80
shopping mall 0.81 0.77

street pedestrian 0.82 0.84
street traffic 0.94 0.80

tram 0.81 0.79

Average 82.3% 82.4%



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

Table 3: Task 1b, best single model, devices B and C only.

Class Recall Precision

airport 0.36 0.68
bus 0.86 0.72

metro 0.77 0.55
metro station 0.79 0.63

park 0.86 0.94
public square 0.23 0.66
shopping mall 0.79 0.51

street pedestrian 0.55 0.57
street traffic 0.95 0.73

tram 0.47 0.88

Average 66.3% 68.6%

Table 4: Task 1c, best single model.

Class Recall Precision

airport 0.43 0.88
bus 0.76 0.94

metro 0.54 0.91
metro station 0.60 0.96

park 0.80 0.94
public square 0.50 0.77
shopping mall 0.61 0.84

street pedestrian 0.47 0.73
street traffic 0.87 0.90

tram 0.63 0.84

Known class average 62.0% 87.0%

unknown 80.3% 17.6%

Overall average 63.7% 80.7%

Evaluation score 71.1% N/A

Figure 1: Normalized confusion matrix for Task 1a, best single
model (normalization using the true label, i.e. recall mode).

Figure 2: Normalized confusion matrix for Task 1b, best single
model (normalization using the true label, i.e. recall mode), for de-
vices B and C only.

Figure 3: Normalized confusion matrix for Task 1c, best single
model (normalization using the true label, i.e. recall mode).



Detection and Classification of Acoustic Scenes and Events 2019 Challenge

References
[1] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device

dataset for urban acoustic scene classification,” in Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2018 Workshop (DCASE2018), November 2018, pp.
9–13. [Online]. Available: https://arxiv.org/abs/1807.09840

[2] Y. Sakashita and M. Aono, “Acoustic scene classification by
ensemble of spectrograms based on adaptive temporal divi-
sions,” Tech. Rep., 2018, DCASE 2018 technical reports.

[3] H. Zeinali, L. Burget, and J. H. Cernocky, “Convolutional neu-
ral networks and x-vector embedding for DCASE2018 acous-
tic scene classification challenge,” in Proceedings of the De-
tection and Classification of Acoustic Scenes and Events 2018
Workshop (DCASE2018), November 2018, pp. 202–206.

[4] M. Dorfer and G. Widmer, “Training general-purpose au-
dio tagging networks with noisy labels and iterative self-
verification,” in Proceedings of the Detection and Clas-
sification of Acoustic Scenes and Events 2018 Workshop
(DCASE2018), November 2018, pp. 178–182.

[5] Y. Zhang, M. Pezeshki, P. Brakel, S. Zhang, C. Laurent,
Y. Bengio, and A. Courville, “Towards end-to-end speech
recognition with deep convolutional neural networks,” in In-
terspeech, 2016, pp. 410–414.

[6] D.Rothman, “What’s wrong with CNNs and spec-
trograms for audio processing?” Tech. Rep., 2018,
https://towardsdatascience.com/whats-wrong-with-
spectrograms-and-cnns-for-audio-processing-311377d7ccd.

[7] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“Mixup: Beyond empirical risk minimization,” in Interna-
tional Conference on Learning Representations, 2018.

[8] M. D. McDonnell, “Training wide residual networks for de-
ployment using a single bit for each weight,” 2018, in Proc.
ICLR 2018; arxiv: 1802.08530.

[9] I. Loshchilov and F. Hutter, “SGDR: stochastic gradient
descent with restarts,” CoRR, vol. abs/1608.03983, 2016.
[Online]. Available: http://arxiv.org/abs/1608.03983

[10] S. J. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev,
and P. Woodland, The HTK Book Version 3.4. Cambridge
University Press, 2006.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings
in deep residual networks,” Microsoft Research, Tech. Rep.,
2016, arxiv.1603.05027.

https://arxiv.org/abs/1807.09840
http://arxiv.org/abs/1608.03983

	 Introduction
	 Strategy and Model Innovations
	 Acoustic feature extraction
	 CNN design
	 Aggressive regularization and data augmentation

	 Methods
	 Acoustic file preprocessing
	 Splitting of high and low frequencies
	 No downsampling in frequency layers
	 Other CNN design aspects
	 Regularization and data augmentation
	 Training
	 Inference
	 Validation

	 Results
	 Discussion
	 Remarks on Task 1a
	 Remarks on Task 1b
	 Remarks on Task 1c


