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ABSTRACT

This technical report describes and discusses the algorithm sub-
mitted to the Sound Event Localization and Detection Task of
DCASE2019 Challenge. The proposed methodology combines a
parametric spatial audio analysis approach for localization estima-
tion, a simple heuristic for event segmentation, and a deep learn-
ing based monophonic event classifier. The evaluation of the pro-
posed algorithm with the development dataset yields overall results
slightly outperforming the baseline system. The main highlight is a
reduction of the localization error over 65%.

Index Terms— SELD, parametric spatial audio, deep learning

1. INTRODUCTION

Sound Event Localization and Detection (SELD) refers to the prob-
lem of identifying, for each individual event present in a sound field,
its temporal activity, spatial location, and sound class to which it be-
longs. SELD is an ongoing problem which deals with microphone
array processing and sound classification, with potential applica-
tions in the fields of signal enhancement, autonomous navigation,
acoustic scene description or surveillance, among others.

SELD arises from the combination of two different problems:
Sound Event Detection (SED) and Direction of Arrival Estimation
(DOA). The number of works in the literature jointly addressing
SED and DOA problems is relatively small. We can classify them
by the type of microphone array used: distributed [1, 2, 3] and
near-coincident [4, 5, 6]. As mentioned in [6], the usage of near-
coincident circular/spherical arrays enables the representation of the
sound field in the spatial domain, using the spherical harmonic de-
composition, also known as Ambisonics [7, 8]. Such spatial repre-
sentation allows a flexible, device-independent comparison among
methods. Furthermore, the number of available Ambisonic micro-
phones has increased in recent years due to their suitability for im-
mersive multimedia applications. Taking advantage of the compact
spatial representation provided by the spherical harmonic decompo-
sition, several methods have been proposed for parametric analysis
in the Ambisonic domain [9, 10, 11, 12]. These methods are capable
of segmentating a sound field into direct and diffuse components,
and further estimating the localization of the direct sounds. The ad-
vent of deep-learning techniques for DOA estimation has also im-
proved the results of traditional methods [6]. However, none of the
DNN-based DOA estimation methods explicitly exploits the Am-
bisonic parametric analysis. This situation is further extended to
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the SELD problem, with the exception of [5], where DOAs are cal-
culated from the active intensity vector.

The motivation for the proposed methodology is two-fold.
First, we want to check whether the usage of spatial parametric
analysis helps in the event classification task. Second, since the
parametric analysis is usually performed in the time-frequency (TF)
domain, temporal information could be further exploited to derive
sound event onsets and offsets, thus lightening the complexity of
the event classifier.

In what follows, we present the methodology and the architec-
ture of the proposed system (Section 2). Then, we describe the de-
sign choices and the experimental setup (Section 3), and discuss the
results in comparison with a baseline implementation (Section 4).
A summary is finally presented in Section 5. In order to support
open access and experiment reproducibility, all code produced in
this research is freely available at [13].

2. METHODS

The method presented proposes a solution for the SELD problem
splitting the task into four different problems: DOA estimation,
association, beamforming and classification, which are described
in the following subsections. The former three systems follow an
model-based analytical approach—in what follows, they will be
jointly referred to as the parametric frontend. Conversely, the clas-
sification system is data-driven, and will be referred to as the deep
learning backend. The method architecture is depicted in Figure 1.
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Figure 1: System architecture.

2.1. DOA estimation

The DOA estimation system computes the DOAs of the signals most
significant TF bins, based on a parametric spatial audio analysis of
the input signal. A general overview of the system can be found in
Figure 2. In a more formal description, given a first order ambisonic
time-domain signal bbb(t)1 with L = 4 channels:

bbb(t) = [bx(t),
√

3by(t),
√

3bz(t),
√

3bx(t)]ᵀ, (1)

1Considering ACN channel ordering and N3D normalization.
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Figure 2: DOA estimation architecture.

First, the input signal is transformed into the short-time frequency
domain signal BBB(k, n) using the Short-Time Fourier Transform
(STFT). It is then possible to obtain an estimate of the instanta-
neous predominant DOA (in azimuth and elevation) at each bin,
ΩΩΩ(k, n) = [ϕ(k, n), θ(k, n)]:

III(k, n) = − 1

Z0
R{[By(k, n), Bz(k, n), Bx(k, n)]ᵀBw(k, n)∗},

ΩΩΩ(k, n) = ∠(−III(k, n)),
(2)

where III(k, n) stands for the active intensity vector [9], Z0 is the
characteristic impedance of the medium, ∗ represents the complex
conjugate operator, and ∠ is the spherical coordinates angle.

Next, we would like to filter ΩΩΩ(k, n) in order to only include
information from the bins where a sound event is present. For that
goal we compute three different binary masks.

The first one is the energy density mask, which is used as an
activity detector. The energy density E(k, n) [9] is an estimator of
the total energy of a given TF bin:

E(k, n) =
|Bw(k, n)|2 + ||[By(k, n), By(k, n), Bz(k, n)]ᵀ||2

2Z0c
,

(3)
being c the speed of sound. A gaussian adaptive thresholding

algorithm is then applied to E(k, n), in order to avoid suppressing
events with lower energy, which might occur with a fixed threshold
value. The energy density mask is thus defined as the bins with an
energy density level higher than the local threshold.

The diffuseness mask selects the TF bins in which the trans-
mitted energy is high, which is the case of the sources’ direct path.
Diffuseness Ψ(k, n) is defined in [9] as:

Ψ(k, n) = 1− || 〈III(k, n) 〉 ||
c 〈E(k, n) 〉 , (4)

where 〈 · 〉 represents the temporal expected value.
The third mask is the DOA variance mask. It tries to select the

frequency bins with small standard deviation2 with respect to their
neighbor bins. TF regions with a significant contribution of one
direct source will have small values, while the standard deviation
for isotropic diffuse fields will be maximum [12].

The three masks are then applied to the DOA estimation, ob-
taining the TF-filtered DOAs Ω̄ΩΩ(k, n). As a last step, a median filter
is applied to Ω̄ΩΩ(k, n), which helps to remove spurious TF bins, and
to improve the consistency of the DOA estimation. The median is
computed for a given bin only if the ratio of valid bins in its vicinity
is greater than a given threshold Bmin. The final DOA estimation
result is referred to as Ω̆ΩΩ(k, n).

2In this work, all statistical operators applied to angular position refer to
the circular or 2π-periodic operator for azimuth, and the standard operator
for elevation.

2.2. Association

The association step (depicted in Figure 3) tackles the problem of
assigning the time-frequency-space observation Ω̆ΩΩ(k, n), to a set of
sound events, each one having a specific onset time, offset time and
angular position. First, the DOA estimates are regrouped into the
required hop size h = 0.02 seconds, with the restriction of only
considering the DOA estimates for a given analysis window if its
number is greater than a minimum Kmin. In what follows, each
segment of length h will be called a frame and represented by m.

Next, a space-frequency clustering procedure is applied. For
a given frame M , the standard deviation σ of all DOA estimates
Ω̆ΩΩ(k,M) is computed, and the result is used to determine the over-
lapping amount o(M): 1, if σϕ/2 + σθ < σmax (an angular stan-
dard deviation threshold), or 2 otherwise. If o(M) = 1, then the
clustered DOA value for that frame, ΩΩΩcluster(M), is assigned to the
median of all DOA estimates. Conversely, when o(M) = 2, the
DOAs are clustered using a modified version of K-Means which
minimizes the central angle instead of the euclidean distance. The
value of ΩΩΩcluster(M) in that case is assigned to the tuple given by
the K-Means centroids.

The following step is the grouping of clustered DOA values
into events. Let’s define ΩΩΩS(m) as the frame-wise DOA estima-
tions belonging to the event S. A given clustered DOA estimation
ΩΩΩcluster(M) belongs to the event S if the following criteria are met:

• The central angle between ΩΩΩcluster(M) and the median of
ΩΩΩS(m) is smaller than a given threshold dANGLE

max , and
• The frame distance between M and the closest frame of ΩΩΩS(m)

is smaller than a given threshold dFRAME
max .

Finally, the resulting DOAs are subject to a postprocessing step,
which the purpose of adjusting event onsets/offsets for the frames
where o(m) > 2, and discarding events which are shorter than a
given minimum length. The last step involves the conversion of the
frame-based event DOA estimations into metadata annotations in
the form ΛΛΛS = (ΩΩΩS , onsetS , offsetS).

2.3. Beamforming

Once the event annotations are ready, we can use them to segmen-
tate the input signal in time and space domains. By doing so, it is
possible to extract a monophonic signal estimation of each event,
b̃S(t), as the signal captured by a virtual first-order microphone:

b̃S(t) =

L∑
αααYYY (ΩΩΩS)bbb(t), (5)

where YYY (ΩΩΩS) is the set of real-valued spherical harmonics up to
order L evaluated at the position ΩΩΩS , and ααα defines the virtual mi-
crophone directivity. In this work we have chosen a hypercardioid
pattern, ααα = [1, 1, 1, 1]ᵀ.
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Figure 3: Association architecture.

2.4. Deep Learning Classification Backend

The parametric frontend performs DOA estimation, temporal detec-
tion and time/space segmentation, the output being a monophonic
signal containing, in theory, one single event. The goal of the back-
end is to classify this incoming signal as belonging to one of a tar-
get set of 11 sound categories. Therefore, the multi-task nature of
the parametric frontend allows us to define the backend classifica-
tion task as a simple multi-class problem (even though the original
SELD task is a multi-label one). It must be noted, however, that due
to the limited spatial directivity of the first-order beamformer, the
resulting monophonic signal can present a certain degree of leakage
from additional sound sources when two events overlap, even when
the annotation ΛΛΛS is perfectly estimated.

The proposed classification method is divided into two stages.
First, the incoming signal is transformed into log-mel spectrogram,
which is split into TF patches of RT×F (see Sec 3.3). For the second
stage, we decided to use a single model based on a Convolutional
Recurrent Neural Network (CRNN), fed by the TF patches, and out-
putting probabilities for event classes k ∈ {1...K}, with K = 11.
Predictions are done at the event-level (not at the frame level) since
the onset/offset times have been determined by the frontend.

The proposed CRNN architecture is depicted in Fig 4. It
presents three convolutional blocks to extract local features from the
input representation. Each convolutional block consists of one con-
volutional layer, after which the resulting feature maps are passed
through a ReLU non-linearity [14]. This is followed by a max-
pooling operation to downsample the feature maps and add invari-
ance along the frequency dimension. The target classes vary to a
large extent in terms of their temporal dynamics, some of them be-
ing rather impulsive (e.g., Door slam) while others being more sta-
tionary (e.g., Phone ringing). Therefore, after stacking the feature
maps resulting from the convolutional blocks, this representation is
fed to one bidirectional recurrent layer in order to model discrimina-
tive temporal structures. The recurrent layer is followed by a Fully
Connected (FC) layer, and finally a 11-way softmax classifier layer
produces the event-level probability predictions. Dropout is applied
after the max-pooling operations in the convolutional blocks, and
also after the recurrent layer and the FC layer. Given the formulated
multi-class problem, the loss function used for training is categori-
cal cross-entropy. The model has ∼175k weights.

3. EXPERIMENTS

3.1. Dataset, Evaluation metrics and Baseline system

We use the TAU Spatial Sound Events 2019 - Ambisonic, which
provides First-Order Ambisonic (FOA) recordings3. Details about
the recording format and dataset specifications can be found in [15].
The dataset features a vocabulary of 11 classes encompassing hu-
man sounds and sound events typically occurring in indoor office
environments. The dataset is split into a development and evalua-
tion sets. The development set consists of a pre-defined four fold
cross-validation setup. The SELD task is evaluated with individ-
ual metrics for SED and DOA estimation. SED is evaluated with

3Compatibility with the Microphone dataset could be straightforwardly
accomplished with the usage of proper filters.

Figure 4: Backend model architecture.

F-score (F) and error rate (ER) calculated in one-second segments,
while DOA estimation is evaluated with two frame-wise metrics:
DOA error (DOA) and frame recall (FR) [15]. The baseline sys-
tem features a CRNN that jointly performs DOA and SED through
multi-task learning [6]. Baseline results are shown in Table 2.

3.2. Parametric Frontend

Based on the method’s exploratory analysis, we propose the follow-
ing set of parameter values, which are shown in Table 1. In general,
the selected values follow a permissive approach: most of parame-
ters have relatively low values (e.g. Ψmax,Kmin, σmax). The only
exception is the median filter, which features a very large window
size, and is responsible for TF filtering to a great extent.

3.3. Deep Learning Classification Backend

We use the provided four fold cross-validation setup. We train and
validate using the outcome of an ideal frontend, where the ground
truth DOA estimation and onset/offset times are used as inputs to the
beamformer for time/space segmentation. Conversely, we test the
trained models with the signals coming from the complete frontend
described in Section 2. We conduct a set of preliminary experiments
with different types of networks including a VGG-like net, a less
deeper CNN [16], a Mobilenet v1 [17] and a CRNN [18]. The latter
is found to stand out, and we explore certain facets of the CRNN
architecture and the learning pipeline. A number of decisions are
taken to mitigate the risk of overfitting given data scarcity.

Sound events in the dataset last from ∼ 0.2 to 3.3s. First, clips
shorter than 2s are replicated to this length. Then, we compute
TF patches of log-mel spectrograms of 1s (equivalent to T = 50
frames) and F = 64 bands. This is the result of exploration of
T ∈ {25, 50, 75, 100} and F ∈ {40, 64, 96, 128}. T = 50 is the
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Table 1: Parameter values for the selected configuration. Top: DOA
analysis parameters. Bottom: Association parameters.

Parameter Unit Value

sampling rate Hz 48000
STFT window size sample 256

STFT window overlap sample 128
STFT window type - Hann

minimum STFT frequency Hz 0
maximum STFT frequency Hz 15000

time average vicinity radius r bin 10
diffuseness mask threshold Ψmax - 0.5

energy density filter length bin 11
std mask vicinity radius bin 2

std mask normalized threshold - 0.15
median filter minimum ratio Bmin - 0.5
median filter vicinity radius (k,n) bin (20, 20)

resampling minimum valid bins Kmin bin 1
overlapping std threshold σmax degree 10

grouping maximum angle dANGLE
max degree 20

grouping maximum distance dFRAME
max frame 20

event minimum length frame 8

top performing value, roughly coinciding with the median duration
of events in the dataset; more than 64 bands provide inconsistent
improvements while increasing the number of network weights.

Several variations of the CRNN architecture are explored until
reaching the network of Fig 4. This includes a small grid search over
number of CNN filters, CNN filter size and shape, number of GRU
units, number of FC units, dropout [19], learning rate, and whether
or not to use Batch Normalization (BN) [20]. Network extensions
(involving more weights) are considered only if providing major im-
provements, as a measure against overfitting. The main takeaways
are: i) squared 3x3 filters provide better results than larger filters, ii)
dropout of 0.5 is critical in mitigating overfitting, iii) more than one
recurrent layer does not yield improvements, while slowing down
training, and iv) surprisingly, slightly better performance is attained
without BN nor pre-activation [21]. For all experiments, the batch
size is 100 and Adam optimizer is used [22] with initial learning
rate of 0.001, halved each time the validation accuracy plateaus for
5 epochs. Earlystopping is adopted with a patience of 15 epochs
monitoring validation accuracy. Prediction for every event is ob-
tained by computing predictions at the patch level, and aggregating
them with geometric mean to produce a clip-level prediction.

Finally, we apply mixup [23] as data augmentation technique.
Mixup consists in creating virtual training examples through linear
interpolations in the feature space, assuming that they correspond
to linear interpolations in the label space. Essentially, virtual TF
patches are created on the fly as convex combinations of the input
training patches, with a hyper-parameter α controlling the interpo-
lation strength. Mixup has been proven successful for sound event
classification, even in adverse conditions of corrupted labels [24].
It seems appropriate for this task since the frontend outcome can
present leakage due to overlapping sources, effectively mixing two
sources while only one training label is available, which can be un-
derstood as a form of label noise [16]. Experiments revealed that
mixup with α = 0.1 boosted testing accuracy in ∼ 1.5%.

4. RESULTS AND DISCUSSION

Table 2 shows the evaluation results of the proposed method for the
development dataset, compared with the baseline. The proposed
method and the baseline obtain very similar results in SED (ER and
F). However, there is a clear difference in the DOA metrics. The
DOA error in the proposed method is reduced by a factor over 3,
which represents an improvement of 68% with respect to the base-
line. FR, by contrast, is 9 points worst in the proposed method. In
summary, the SELD score for both methods is very similar, with the
proposed method slightly outperforming the baseline.

The most significant conclusion is the great improvement in
DOA error. The result suggests that using spatial audio paramet-
ric analysis as a preprocessing step can substantially improve the
localization error. This fact may be explained taking into account
the great compression performed to the input spectrograms, which
eliminates most of non-relevant TF information.

Conversely, the frontend fails with respect to FR. This is proba-
bly due to the added complexity and the misbehaviour of the associ-
ation algorithm [6]. One of the main problems is the lack of robust-
ness against reverberation: strong early reflections might be incor-
rectly characterised as individual sources, thus potentially leading
to underestimation of existing overlapping sources. The inclusion
of spectral information might help to disambiguate in this case—
such information could be provided in parallel by the classifier, in
a similar approach to the baseline system. Another possibility in-
cludes more sophisticated source counting methods [11, 25].

To better analyze the performance of the classification back-
end, Table 2 shows the results when the testing clips are obtained
using the groundtruth DOAs and onset/offset times as inputs to the
beamformer (ideal frontend). In this ideal scenario of DOA per-
formance, the classification metrics show a significant boost. This
suggests that the low FR given by the frontend (i.e., events being
partially or totally missed) has a severe impact on the backend clas-
sification performance. Yet, the proposed system reaches similar
performance to the baseline system in terms of SED metrics.

Table 2: Evaluation results on development set.

Method ER F DOA FR SELD

Baseline 0.34 79.9% 28.5◦ 85.4% 0.2113
Proposed 0.32 79.7% 9.1◦ 76.4% 0.2026

Ideal frontend 0.08 93.2% ∼ 0◦ ∼ 100% 0.0379

5. CONCLUSION

We have presented a novel approach for the SELD task. Our
method performs spatial parametric analysis and a simple associ-
ation methodology to estimate the DOAs, onsets and offsets of the
sound events. This information is used to filter the input signal in
time and space, and the resulting monophonic event estimation is
fed into a CRNN which predicts the class to which the event be-
longs. In this way, the classification problem is handled from a sim-
ple multi-class perspective. The proposed methodology is able to
obtain slightly better overall results than the baseline system. The
localization performance is greatly improved while the detection
and classification performance suffers from the loss of Frame Re-
call. The improvement of this metric in the proposed system could
lead to promising SELD scores, suggesting that signal preprocess-
ing through spatial parametric analysis might improve the classifi-
cation task.
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