
Detection and Classification of Acoustic Scenes and Events 2019 Challenge

FREQUENCY-AWARE CNN FOR OPEN SET ACOUSTIC SCENE CLASSIFICATION
Technical Report

Alexander Rakowski, Michał Kośmider
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ABSTRACT

This report describes systems used for Task 1c of the DCASE 2019
Challenge - Open Set Acoustic Scene Classification. The main sys-
tem consists of a 5-layer convolutional neural network which pre-
serves the location of features on the frequency axis. This is in
contrast to the standard approach where global pooling is applied
along the frequency-related dimension. Additionally the main sys-
tem is combined with an ensemble of calibrated neural networks in
order to improve generalization.

Index Terms— convolutional neural network, frequency
aware, ensembling

1. INTRODUCTION

Task 1C of the DCASE 2019 Challenge [1] extends the original
task (1A) with the problem of detecting samples not belonging to
any of the 10 known classes, termed open set classification. Sam-
ples of the “known” classes are taken from the TAU Urban Acous-
tic Scenes 2019 Openset development dataset [2], while the out-of-
distribution samples are extracted from the TUT Acoustic scenes
2017 dataset [3].

2. DATA PREPROCESSING

2.1. Main system

Input features for the main model are obtained by computing 64-
bin log-mel spectrograms of the audio recordings, resampled to 32
kHz, with a window size of 1024 frames and hop size of 500. This
results in data of shape H ×W , where H = 64 is the number of
frequency bins andW = 640 is the number of spectrogram frames.
Before being fed to the network the inputs are standardized using
the mean and standard deviation computed across all samples from
the training set. Note that these statistics are computed for each
frequency bin.

2.2. Secondary system

Similar to the main system log-mel spectrograms were used as in-
put features for the calibrated CNNs, with 256 mel bins, a window
size of 2048 and hop size of 512. Frequency bin values were stan-
dardized in the same manner as in the main system.

3. MODELS

3.1. Frequency-aware CNN (main system)

The architecture of the main model is based on the 5-layer CNN
from [4]. It consists of several convolution blocks which extract

spectro-temporal feature maps from the input. These maps are then
aggregated using a global max pooling operation yielding a feature
representation for the whole recording, which is then processed by
the final fully-connected layer with a sigmoid activation. Structure
of a single convolution block is shown in Figure 1.

Contrary to the original system global pooling is applied only
across the temporal dimension. The frequency-related dimension
is instead merged with the channel dimension. More formally, an
input sample x of shape 1×F×T is passed through the convolution
blocks, resulting in a feature map of shape C × F ′ × T ′, where C
is the number of filters in the last convolution block and F ′ and T ′

are the sizes of the spectral and temporal dimensions respectively,
after being reduced due to the pooling operations inside each block.
Merging the channel and spectral dimensions results in a tensor of
shapeC ·F ′×1×T ′. Finally, applying global max pooling over the
temporal dimension reduces the tensor to a shape of C ·F ′× 1× 1.

In the domain of image processing global pooling is often ap-
plied over both spatial dimensions, motivated by the assumption
that when performing object classification the obtained features
should be translation-invariant1 However this is not necessarily
desirable when handling spectro-temporal data like spectrograms
- even though they are processed using the same methods (two-
dimensional convolutions). Whether certain pattern are detected
in lower or in higher frequency bands might be of importance for
classification.

Final predictions are obtained in the same manner as in [4]. If
none of the probabilities assigned to each of the 10 known classes
is higher than 0.5, the sample is treated as the unknown class. Oth-
erwise the class with the highest probability is returned as the pre-
diction.

Because of this approach it is desirable for the model not to
yield overly confident predictions on examples considerably differ-
ent from those seen during training, so that the out-of-distribution
samples will be correctly recognized at test time. In order to achieve
this Manifold Mixup [5] is employed (with α = 0.5), which forces
the model to have smoother predictions on hidden state interpola-
tions of different examples. It is also argued that this technique has
a regularizing effect on the network. In fact, models trained with
Manifold Mixup generalized better than those trained with dropout
(both standard and spatial dropout [6]), while combining these two
techniques together did not yield better results.

Two variants of this model are used for the final submission,
differing in number of layers and convolutional filters used. Their
configurations are shown in Table 1.

1Unless, naturally, an additional task such as object localization is being
solved.
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Filters Pooling

Variant 1

64 2× 2
128 2× 2
256 2× 2
512 -

Variant 2

32 2× 2
64 2× 2
128 2× 2
192 -
384 2× 2

Table 1: Layer configurations of the two variants of the main system

5× 5 convolution

Batch normalization

ReLU

2× 2 avg. pooling

Figure 1: Structure of a convolution block used in the main system

3.2. Calibrated CNNs (secondary system)

The secondary system is an ensemble of 15 separately trained con-
volutional neural networks. Architecture of these networks is shown
in Table 2. System predictions are obtained using calibrated soft
voting. The calibration is done for each model, with a randomly
created validation set, using isotonic regression for each class. Fi-
nally, these predictions are further aggregated by using “plain” soft
voting (without further calibration) with two of the main models.

The following data augmentation techniques are used when
training these models. Mixup [8] with α = 0.2 is applied on 30%
of the training samples. Additionally, following SpecAugment [9],
blocks of time are randomly zeroed out with maximum width of 80,
random frequency bands are zeroed out with maximum height of 27
and time warping is applied with a width of 40 frames.

Layer Channels Kernel Stride

Conv2D+ReLU+BN 16 3 1
Conv2D+ReLU+BN 32 3 2
Conv2D+ReLU+BN 32 3 1
Conv2D+ReLU+BN 64 3 2
Conv2D+ReLU+BN 64 3 1

Global average pooling 64 - -
Fully-connected 10 - -

Table 2: Architecture of a single network of the calibrated ensem-
ble. BN stands for Batch Normalization [7].

Model Accuracy [%]

Main model 1 57.5
Main model 2 57.5
Ensemble of 1 and 2 53.5
Ensemble of 1, 2 and
the calibrated models 55.3

Table 3: Results of the submitted systems on the public leaderboard

4. EXPERIMENTS AND RESULTS

4.1. Setups

4.1.1. Main system

The two variants of the main system are trained for 10,000 iterations
on mini-batches of size 32, using the AMSGrad [10] variant of the
Adam [11] optimizer, with an initial learning rate of 1e−3. After
each 200 iterations the learning rate is decayed by a factor of 0.9.

4.1.2. Secondary system

The calibrated ensemble is trained for 50,000 iterations using the
Ada-delta [12] optimizer, on mini-batches of size 64. Learning rate
is reduced by half if accuracy does not improve by at least 10−3

for 16 epochs, starting at 0.5. Focal loss [13] with γ = 1 and no
class weights is used as the loss function. Additionally, an `2 norm
regularization term on model parameters is added with a weight of
10−5.

4.2. Results

Results of each of the 4 submitted systems: two variants of the
main model, their ensemble, and an ensemble of the two with the
calibrated models are shown in Table 3. Note that the two vari-
ants of the main system obtained an identical score. Additionally,
their ensemble performs worse than each of the single models, indi-
cating that their decisions are not complementary. However, while
still performing worse than the single models, adding the calibrated
models to the ensemble improves the aggregated score, probably
due to bigger differences in architecture and training procedures.

5. CONCLUSIONS

The main system presented in this report introduces a frequency-
aware CNN architecture for the task of open set acoustic scene
classification. This modification to the standard approach of han-
dling spectrogram-like data preserves a coarse information about
the position of detected patterns in the frequency-related dimen-
sions. The models are trained using Manifold Mixup in order to
force their predictions to be less certain for out-of-distribution data.
Along two variants of the proposed CNN model, two ensembled
predictions are submitted, one being a simple average of the two
single models, and the other one including additionally a bigger
“sub-ensemble” system of 15 calibrated CNNs. However results on
the public leaderboard seem to indicate better perfromance of just
the single models.
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