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ABSTRACT

We present the signal processing framework and the results ob-

tained with the development dataset (task 1, subtask A) for the de-

tection and classification of acoustic scenes and events (DCASE

2019) challenge. The framework for the classification of urban

acoustic scenes consists of a raw waveform (RW) end-to-end com-

putational scheme based on convolutional neural networks (CNNs).

The RW-CNN operates on a time-domain signal segment of 0.5 s

and consists of 5 one-dimensional convolutional layers and 3 fully

connected layers. The overall classification accuracy with the de-

velopment dataset of the proposed RW-CNN is 69.7%.

Index Terms— Urban acoustic scene classification, end-to-end

learning, raw waveform , convolutional neural network.

1. INTRODUCTION

Acoustic scene classification (ASC) aims at identifying the environ-

ment in which an audio recording has been produced. Applications

that can benefit from ASC include the design of context-aware ser-

vices, intelligent wearable devices, robotics navigation systems, and

audio archive management [1].

Since many decades, machine learning and neural network

models have been successfully employed in a wide range of audio

processing applications, such as automatic speech recognition [2],

audio forensic [3], music information retrieval [4], sound classifica-

tion [5], array signal processing [6], and ASC [7]. Moreover, since

the new computational and performance advances brought by the

recent developments in the field of deep neural networks (DNNs)

research, the use of this particular computation model is now being

investigated in a variety of acoustic applications.

Recently, there have been various attempts to directly use the

raw waveform (RW) to learn feature representation with DNNs [8,

9, 10, 11]. In [8], it is shown that the RW and mel-frequency cepstral

coefficients (MFCCs) with convolutional neural network (CNN)

have comparable performance for the estimation of phoneme class

conditional probabilities. The ASR performance with RW and DNN

has been analyzed in [9] with promising results that however present

a slight worse gap with the MFCC features. In [10], it is shown that

RW matches the ASR performance of log-mel filterbank energies

using convolutional long short-term memory DNNs. The RW-DNN

has been demonstrated to outperform a DNN that uses log-mel fil-

terbank magnitude features using a multichannel system for ASR

[11].

In this report, we present a signal processing framework based

on RW-CNN model for the DCASE 2019 challenge [12]. The

framework has an end-to-end computational scheme, in which the

raw audio signal is used as the input of the network, without any fur-

ther acoustic front-end processing. We design accurately the CNN

model by analyzing the convolutional and pooling effects on raw

signals. This analysis suggests that using the same convolutional

filter size in all layers is the best choice. The network consists of

5 one-dimensional convolutional layers and 3 fully connected lay-

ers. We use a network scheme to handle variable-length signals by

designing the CNN input using a signal frame of 0.5 s.

2. RAW WAVEFORM CNN ACOUSTIC MODEL

We aim at designing a nonlinear function F (·,Θ) using a CNN

(Θ are the learned parameters during the training), which maps the

input raw waveform x(t) of the n-the acoustic scene to the output

prediction class n

n(t) = F (x(t),Θ). (1)

The input signal is a vector of length L

x(t) = [x(t− L+ 1), x(t− L+ 2), . . . , x(t)]. (2)

The overall structure of the one-dimensional convolution CNN

network is made of several convolution layers, followed by fully-

connected layers and a classification layer. The data undergoes

a filtering and activation detection step operated through the one-

dimensional convolutional layer, as

h
l = σ(wl

∗ h
l−1 + bl), (3)

where h
l and h

l−1 are feature maps in two consecutive layers, wl

is a trained kernel, bl is a bias parameter, σ(·) is the activation func-

tion, and * denotes convolution. The rectified linear unit (ReLU)

[13] is a common operation for generating the output of the con-

volutional layer. It computes the function f(x) = max(0, x). The

bias guarantees that every node has a trainable constant value. The

kernels are computed through a stochastic gradient descent method

[14], which minimizes a loss function measuring the discrepancy

between the CNN predictions and the targets. The loss function for

classification is the cross entropy [15].

The output of the convolutional layers is then used as the input

of one or more fully connected layers, in which each neuron is con-

nected to all neurons of the previous layer. A fully connected layer

multiplies the input by a weight matrix and then adds a bias vector

h
l

FC = σ(Wl
h
l−1

FC + b
l). (4)
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To operate a dimensionality reduction and yield more robust

features, a pooling layer following the ReLU layer is typically used

with an averaging or maximizing operation with respect to the di-

mension of the feature [16]. The pooling operation, which performs

a downsampling of the data, consists in dividing the input into pool-

ing regions and computing the average or the maximum of each

region. Another operation that is commonly used in CNNs to pre-

vent overfitting is the dropout [17], which randomly sets input ele-

ments to zero with a given probability. To speed up the training of

CNNs and reduce the sensitivity to network initialization, the batch

normalization is used to normalize the data across a mini-batch,

back-propagating the gradients through the normalization param-

eters [18]. The activation function used in classification layer is the

softmax function [19].

The features extraction operation from the raw waveform con-

sists mainly of two processes: convolution and max (or average)

pooling. It is interesting to underline the effect of these operations

on a time-domain audio signal. First, the convolution theorem states

that the Fourier transform of a convolution of two signals is the

point-wise product of their Fourier transforms. The convolution,

which is typically computed with small kernel size, computes a fil-

ter transformation of the input with low frequency resolution. For

example, assuming a sampling rate of 48 kHz and a kernel size of

32, the frequency resolution will be 1500 Hz. In this case, through

the optimization algorithm, the kernel learns to emphasize the input

data on 16 sub-bands with resolution of 1500 Hz. The max pool-

ing performs down-sampling. Considering an operation with size

2 and stride 2, an input of length L will be L/2 after the pooling.

Basically, a sub-sampling is computed reducing the sampling fre-

quency by half. If the sampling rate is 48 kHz, it will be 24 kHz

after the pooling. We can note that this operation introduces alias-

ing in the transformed signal. The aliasing frequency components

are not lost, but they are projected in the spectrum as aliasing fre-

quencies. After successive convolutional and pooling layers, the

audio signal is again filtered and down-sampled. This results in

an effective features extraction operation. The convolution empha-

sizes frequency components of the input with few sub-bands, and

the pooling reduces the input size without loss of information since

high frequency components are projected as aliasing frequencies in

the spectrum. A small filtered version of the audio input will be

more robust for the neural network processing if it represents the

input with essential characteristics. For this reason, it is particular-

ity important to appropriately set the kernel size taking into account

that the pooling operation has to reduce and to filter the input size

preserving prominent frequency components.

3. ACOUSTIC SCENE CLASSIFICATION

We use a network scheme suitable for handling variable-length sig-

nals by designing the CNN input using a short signal frame L. This

strategy makes the network flexible for the audio segment to ana-

lyze due to the frame setting.

The ASC based on the raw waveform CNN acoustic model is

computed using a segment of the signal composed of B frames

of length L. The sequence of input vectors is x(t + bR), b =
0, 1, . . . , B − 1, where R is the overlap step. Each input vector

x(t + bR) of size L is processed by the CNN, which estimates B
predictions for the identification.

Table 1: The architecture of the proposed RW-CNN.

l Layer Description Output Size

1 Input raw waveform 24000× 1

2 Convolution 1× 16, 32 filters 24000× 32
3 Batch normalization 24000× 32
4 ReLU 24000× 32
5 Max pooling 1× 4, stride 4 6000× 32

6 Convolution 1× 16, 64 filters 6000× 64
7 Batch normalization 6000× 64
8 ReLU 6000× 64
9 Max pooling 1× 4, stride 4 1500× 64

10 Convolution 1× 16, 128 filters 1500× 128
11 Batch normalization 1500× 128
12 ReLU 1500× 128
13 Max pooling 1× 4, stride 4 375× 128

14 Convolution 1× 16, 256 filters 375× 256
15 Batch normalization 375× 256
16 ReLU 375× 256
17 Max pooling 1× 4, stride 4 93× 256

18 Convolution 1× 16, 512 filters 93× 512
19 Batch normalization 93× 512
20 ReLU 93× 512
21 Max pooling 1× 4, stride 4 23× 512

22 Fully connected output size: 512 1× 512
23 ReLU 1× 512
24 Dropout probability: 0.5 1× 512
25 Fully connected output size: 512 1× 512
26 ReLU 1× 512
27 Dropout probability: 0.5 1× 512
28 Fully connected output size: 10 1× 10
29 Softmax classification predicted class probabilities 1× 10

The classification is calculated as

n̂ = argmax
n

[

B−1
∑

b=0

pn(t+ bR)
]

, (5)

where pn(t+ bR) is the prediction output of the input vector x(t+
bR) for the classification of the n-th acoustic scene. The B outputs

whose sum correspond to the largest value provides the acoustic

scene class predicted for the audio input signal.

4. CNN ARCHITECTURE

The architecture of the proposed RW-CNN consists of 5 one-

dimensional convolutional layers, 3 fully connected layers, and a

classification layer with softmax function. We carefully tune the

kernel size and the number of filters of convolutional layers, the

max pooling operation, and the output of intermediate fully con-

nected layers to obtain an optimized performance. After each con-

volutional layer, the batch normalization and the activation with the

ReLU are computed. Then a max pooling layer operates a dimen-

sionality reduction. Each kernel of the convolutional layers has di-

mension 1 × 16 with stride of 1 adding zero padding to have the

same size of the output as the input. In the first convolutional layer,

the number of filters is 32, and it is doubled for each subsequent

convolutional layer. The max pooling layers have dimensions 1× 4
with stride 4. To enhance nonlinearity and to reduce overfitting,

3 fully connected layers are used with two dropout layers between
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Figure 1: Schematic diagram of the proposed system.

them. The dropout layer is set with a probability of 0.5. The first

and the second fully connect layers have an ouput size of 512 neu-

rons. The last fully connect layer has N = 10 output neurons. The

network is thus composed of 29 layers (1 input, 5 convolutional,

5 max pooling, 5 batch normalization, 7 ReLU, 3 fully connect, 2

dropout, 1 softmax classification).

In this study, we use a length frame L of 24000 samples (0.5 s)

with a sampling rate of 48 kHz. The size of convolutional kernels

is the same for all layers. This setting allows the increment of the

filter resolution at each next convolutional layer due to the down-

sampling operated by the max pooling. A kernel of size 16 cor-

responds to a filtering operation with frequency resolution of 3000

Hz in the first convolutional layer, of 750 Hz in the second convolu-

tional layer, and so on. The last convolutional layer has a frequency

resolution of 11.72 Hz. The size of the feature maps is hence 23

samples with 512 filters. Table 1 shows the architecture of the pro-

posed RW-CNN.

The training of the CNN is computed through a stochastic gra-

dient descent method [14], which minimizes a cross entropy loss

function measuring the discrepancy between the CNN prediction

and the target. The learning rate is set to 0.001 using a mini-batch

size of 32. The number of epochs is 100. The total number of learn-

able parameters is 9053546.

5. EXPERIMENTAL RESULTS

We present the experimental results on the development dataset

(task 1, subtask A). The development dataset contains only stereo

material recorded with the same device, containing 40 hours of au-

dio, balanced between classes. The data comes from 10 of the 12

cities (the evaluation dataset contains data from all 12 cities). The

training subset contains recordings from only 9 of the cities, to test

the generalization properties of the systems. The training and the

test subsets consist of 9185 and 4185 segments, respectively. Each

segment has a duration of 10 s. The system setup is implemented

with the following parameters:

• sampling rate: 48 kHz;

• CNN input size: L = 24000 samples;

• hop size: R = 24000 samples;

• number of frames for classification: B = 20.

The signal processing framework has been implemented using Mat-

lab R2018a. The overall processing workflow is summarized in

Figure 1. In both training and testing phase, the stereo audio input

recordings are first converted into mono signals, and then each seg-

ment are divided in B = 20 frames of 0.5 s (L = 24000 samples)

duration. Each segment is transformed with a root mean square

(RMS) normalization. The 20 normalized frames are analyzed with

the RW-CNN, and the acoustic scene classification is finally com-

puted using equation (5).

Table 2: Classification results (accuracy %) of the development

dataset (task 1, subtask A).

Scene Label Baseline RW-CNN

Airport 48.4 73.9

Bus 62.3 76.9

Metro 65.1 64.0

Metro station 54.5 65.1

Park 83.1 90.7

Public square 40.7 39.3

Shopping mall 59.4 49.9

Street pedestrian 60.9 72.7

Street traffic 86.7 90.5

Tram 64.0 75.7

Overall 62.5 69.7

Table 2 shows the DOA classification results of the baseline and

the proposed RW-CNN for the development dataset. The baseline

system is based on a CNN, where log mel-band energies are first

extracted for each 10-second signal. The network consists of two

CNN layers and one fully connected layer. The proposed RW-CNN

has an accuracy of 69.7%, and improves of 7.2 % the baseline sys-

tem.

6. CONCLUSIONS

A signal processing framework based on a RW-CNN model for

the DCASE 2019 challenge has been presented. We described the

framework that is based on an end-to-end computational scheme, in

which the raw audio signal is used as the input of the network. We

showed the results with the development dataset, and we showed

that the proposed RW-CNN outperforms the baseline system with

an accuracy increment of 7.2 %.
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