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ABSTRACT

This technical report describes our system for DCASE2019 Task1
SubtaskB. We focus on analyzing how device distortions affect the
classic log Mel feature, which is the most adopted feature for con-
volutional neural networks (CNN) based models. We demonstrate
mathematically that for log Mel feature, the influence of device dis-
tortion shows as an additive constant vector over the log Mel spec-
trogram. Based on this analysis, we propose to use feature enhance-
ment methods such as spectrogram-wise mean subtraction and me-
dian filtering, to remove the additive term of channel distortions.
Information loss introduced by the enhancement methods is dis-
cussed. We also motivate to use mixup technique to generate virtual
samples with various device distortions. Combining the proposed
techniques, we rank the second on the public kaggle leaderboard.

Index Terms— Robust acoustic scene classification, device
mismatch

1. INTRODUCTION

DCASE2019 Task1b [1] is concerned with the challenge of device
mismatch for acoustic scene classification (ASC). The audio was
captured using devices with various qualities, such as high-quality
microphone, smart phones and cameras.

As in Fig 1, the audio-recording process can be represented by
using a classic dynamic system diagram, where the the original sig-
nal s(n) is convolved with the system impulse response (IR) h(n)
to get the recorded signal x(n), i.e., in the time domain,

x(n) = s(n) ∗ h(n) (1)

The effects of device distortions and reverberation are both con-
volutional, thus they are mingled in h(n). For tasks such as auto-
matic speech recognition, speaker recognition or music processing,
these effects are usually categorized as convolutional noises and are
deemed as distractors to the recognition system.

One interesting property of the convolutional noises is that con-
volutional noise in time domain becomes additive in the log fre-
quency domain, i.e.,

log[X(f)] = log[S(f)] + log[H(f)] (2)

where X(f), S(f) are the frequency domain representation of the
recorded signal and the original signal respectively, andH(f) is the
frequency response of h(n). Thus by assuming that the device and
recording environment characteristic is stable (or changes slowly),

device distortion ( )

reverberation ( )

Figure 1: System diagram of the audio recording process.

the convolutional noises can be removed by popular techniques such
as cepstral mean subtraction (CMS) [2].

However, for recognizing acoustic scenes, the effect of rever-
beration is an important cue for both human [3] and automatic ASC
system [4] to infer the spacial size of the environment. Therefore,
we want to keep the reverberation information while removing the
device distortion. And conventional feature-domain channel nor-
malization methods (such as CMS) would be unsatisfactory as it
will remove reverberation information as well.

In the next section, we will extend our analysis to how device
distortion affect the classic log Mel feature and motivate our feature
enhancement methods, as well as mixup training.

2. ANALYSIS

2.1. Influence of device distortion on log Mel feature

The feature extraction process for log Mel is shown in in Fig 2. For
an input audio x(n), Short-Time Fourier Transform (STFT) power
spectrogramX(f, t) is first extracted, where t is the index of frames
and f is the index of Fourier Transform points. With (1) and the
property of Fourier Transform, it is easy to see that:

X(f, t) = S(f, t)H(f) (3)

where S(f, t) is the STFT power spectrogram of the original sig-
nal, X(f, t) is the STFT power spectrogram of the recorded signal
and H(f) is the frequency response corresponding to the effect of
device distortion and reverberation.

Triangular Mel-bank is then used to integrate frequency com-
ponents to generate a auditory-like spectrogram X(m, t), where m
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is the index for Mel energies. According to the analysis of [5], the
following equation holds,

log[X(m, t)] = log[S(m, t)] + log[H(m)] (4)

only if frequency response h(f) does not change within each fre-
quency band of the Mel-bank. This implies that to make device
distortion and reverberation effect additive in log Mel domain, it’s
better to use large number of Mel-bank.

Mel-banks

Figure 2: Flow chart of the log Mel feature.

In summary, with large number of Mel-banks, the influ-
ence of the device distortion shows as an additive constant vec-
tor log[H(m)] over the log Mel feature of the original signal
(log[S(m, t)]). And it needs to keep in mind that, the reverbera-
tion effect is also mingled in the term log[H(m)].

3. METHODS

3.1. Spectrogram-wise mean subtraction

To remove the influence of the additive device distortion term, we
propose to use spectrogram-wise mean subtraction in the log Mel
domain. The mean subtraction technique can be described as:

log[X(m, t)]−Et[log[X(m, t)]] (5)

where Et[·] stands for expectation operation over frame t. Substi-
tute (4) into (5), this reduces to:

log[S(m, t)]−Et[log[S(m, t)]] (6)

The additive device distortion term log[H(m)] is removed. No-
tably, the mean subtraction operation is applied independently for
each spectrogram, which is different from the standarization pro-
cess.

However, the side effect is that the mean of log Mel the original
signal Et[log[S(m, t)]] is also removed, which loses information.
Besides, the reverberation information is also lost.

3.2. Median Filtering

Median filtering has been found to be quite effective in feature
pre-processing for ASC [6] [7]. Typically, the median-filtered log
Mel spectrogram is subtracted from the original one, thus the back-
ground drift is removed emphasizing the sharp spectral changes.
The filter size is set to (7, 21) by preliminary experiments, which
spans 7 Mel bins and 21 frames.

For our task, median filtering is applied because it helps to alle-
viate the additive device distortion, especially when the log[H(m)]
changes slowly over the frequency (i.e. m) axis.

3.3. Mixup training

Mixup [8] is a simple data-augmentation method which constructs
virtual data-label pair (x̃, ỹ) using convex combination of two ran-
dom data-label pairs (xi, yi) and (xj , yj):

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj

(7)

where λ ∈ [0, 1] is the interpolation coefficient, which is generated
randomly from the symmetric Beta distribution:

λ ∼ Beta(α, α), where α ∈ (0, 1] (8)

For our system, hyper parameter α is set to 0.3, which is determined
by preliminary experiments.

Originally, mixup was motivated from the principle of Vicinical
Risk Minimization (VRM) [8]. Recently, it has also been success-
fully applied to ASC to reduce generalization error [9]. However,
here we motivate using mixup from a different perspective. That
is, by mixing up audio recorded from different devices in the log
Mel domain, the additive device distortion term (log[H(m)]) is also
mixed. As a result, the neural net sees samples with various device
distortions, therefore the net should be robust with device distortion.

3.4. CNN Model

For the CNN model, we adopt the same model as in [10], which
achieve the state-of-the-art performance for ASC without model fu-
sion. The modified Xception model with multi-scale (MS) prop-
erty is utilized, which we will refer to as MSXception model. Pa-
rameters pre-trained from ImageNet dataset [11] is loaded as the
initialization for the model. The models are implemented using
Pytorch [12]. For fully reproducing the reported results, we have
made our code and all the related experiments publicly available at
https://github.com/hackerekcah/dcase19 task1 hitsplab.git

4. EXPERIMENTS

4.1. Datasets

Development set of the DCASE2019 Task1 Subtask B [1] is utilized
for experiments. No external data is used except that the model is
initialized with parameters [11] trained on ImageNet dataset, which
boosts performance by a large margin. The default official partition
of training and testing fold is adopted. The model trained on train-
ing fold is used to evaluate on leaderboard dataset, as well as the
challenge evaluation set. Number of segments for each device in
the development set is listed in Table 1.

Table 1: Number of audio segments for each device.

device device A device B device C

train 9185 540 540
test 4185 540 540

4.2. Features and global normalization

For input features, the log Mel spectrogram is firstly extracted using
librosa library [13] from each audio wave, with a frame length of
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Table 2: Systems trained using validation Metric A.

System ID pre-train global norm mean sub medfilter mixup(α) A(%) ↑ B(%) ↑ C(%) ↑ B&C(%) ↑ device gap(%) ↓

Baseline [1] – – – – – 61.9 39.6 43.1 41.4 20.5
A1 false GMSVN × × × 69.2 45.7 53.5 49.6 19.6
A2 true GMSVN × × × 76.4 55.2 62.2 58.7 17.7
A3 true GMS X × × 67.7 65.2 61.1 63.1 4.6
A4 true GMS × X × 71.8 58.1 59.3 58.7 13.1
A5 true GMSVN × × 0.3 77.8 60.6 65.9 63.2 14.6
A6 true GMS X × 0.3 71.4 69.3 66.9 68.1 3.3
A7 true GMS × X 0.3 73.4 60.6 63.3 61.9 11.5
A5 A6 A7 – – – – – 79.9 69.6 71.7 70.6 9.3

Table 3: Systems trained using validation Metric B.

System ID pre-train global norm mean sub medfilter mixup(α) A(%) ↑ B(%) ↑ C(%) ↑ B&C(%) ↑ device gap(%) ↓

B1 false GMSVN × × × 68.8 48.0 54.4 51.2 17.6
B2 true GMSVN × × × 76.0 56.5 60.2 58.3 17.7
B3 true GMS X × × 67.8 63.9 61.5 62.7 5.1
B4 true GMS × X × 71.6 59.6 61.7 60.6 11.0
B5 true GMSVN × × 0.3 76.7 64.3 67.0 65.6 11.1
B6 true GMS X × 0.3 69.6 67.2 67.6 67.4 2.2
B7 true GMS × X 0.3 74.0 60.2 65.6 62.9 11.1
B5 B6 B7 – – – – – 79.4 69.1 71.9 70.5 8.9

4096, hop size of 1024, and 128 Mel-band energies. Therefore, a
feature map of shape (128, 430) is generated for each audio sample.

For global normalization, mean µ and standard variance σ of
the log Mel energies over all frames and the whole training (or de-
velopment) set are calculated and used to normalize both training
(or development) and validation (or evaluation) set. Two types of
global normalization methods are adopted. For the Global Mean
Subtraction and Variance Normalization (GMSVN) method, µ is
subtracted from each feature map and divide by σ. While for Global
Mean Subtraction (GMS), µ is subtracted from each feature map.
GMS mehthod is used whenever we apply the spectrogram-wise
mean subtraction and median filtering preprocessing methods.

Since the original Xception model accepts tree channel (RGB)
image, the log Mel feature (normalized and processed by the pro-
posed methods) is repeated three times in the channel axis, resulting
in a feature map of shape (3, 128, 430).

4.3. Training protocals

Models are trained using an Adam [14] optimizer with a batch size
of 32 and an initial learning rate of 0.001. The accuracy on testing
fold is used as validation metric for training scheduling. We decay
the learning rate with a factor of 0.5 when the accuracy on testing
fold does not improve for 3 consecutive epochs. We train the models
for 80 epochs and the model with the highest testing accuracy is
saved.

Two types of validation metric on testing fold are utilized to
monitor the model during training. For Metric A: accuracy over the
whole testing fold is monitored (i.e., ignoring the device attribute).

For Metric B: mean of the accuracy on data from device A and the
accuracy on data from device B&C is monitored. Due to the fact
that the amount of data from device A is far more than device B&C
on the testing fold, Metric B tends to select model that biases the
accuracy on device B&C.

4.4. Experimental results and discussions

Systems trained using validation Metric A are listed in Table 2 and
systems trained using validation Metric B are listed in Table 3. Each
system (row) is described in terms of pre-training condition, global
normalization methods used, the inclusion (X) and exclusion (×)
of feature enhancement methods and mixup. Device-wise accuracy
on testing fold is reported. In particularly, for better demonstrating
the performance gap between devices, a new metric (device gap)
is defined as the accuracy difference between device A and device
B&C.

4.4.1. Ablation study for pre-training

By comparing system pair (A1 , A2) and (B1, B2), it can be seen that
pre-training using ImageNet dataset brings significant boost of per-
formance.

4.4.2. Ablation study for mean subtraction

By comparing system pair (A2 , A3) and (A5, A6), as well as (B2 ,
B3) and (B5, B6), it can be seen that mean sub significantly boosts
accuracy on device B&C. According to our previous analysis, this
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Table 4: List of submissions.
Submission Label System ID Fusion LB(%) Rank
Song HIT task1b 1 B5 No – –

Song HIT task1b 2 A5 A6 A7 Yes 76.5 2 /28
Song HIT task1b 3 B5 B6 B7 Yes – –

is explainable since the additive device distortion terms is removed.
This eliminates input distribution mismatch, so that model trained
on data from device A will perform equally well on data from de-
vice B&C after the mean sub pre-processing. Meanwhile, a perfor-
mance degradation on device A is observed, which according to our
analysis, is owing to the loss of reverberation information, which is
an important cue for discriminating acoustic scenes.

4.4.3. Ablation study for median filtering

By comparing system pair (A2 , A4) and (A5, A7), as well as (B2 , B4)
and (B5, B7), the device performance gap is diminished moderately,
however the performance on device A is greatly degradated, which
according to our analysis, is owing to the dramatic information loss
caused by median filtering. This technique should be used only in
the fusion system.

4.4.4. Ablation study for mixup

By comparing system pairs (A2, A5), (A3, A6), (A4,A7), as well as (B2,
B5), (B3, B6), (B4,B7), it can be seen mixup not only boosts perfor-
mance on all devices, it also diminish performance gap between
devices, which accords with our previous analysis.

4.4.5. System fusion

A simple fusion of three systems trained on various feature enhance-
ment methods is investigated. Probability aggregation over three
systems is utilized as fusion strategy. It is clear that the fusion sys-
tem improves performance on all devices.

5. SUBMISSIONS

Three systems are submitted to the challenge website for final evalu-
ation, including one single-model system and two fusion-based sys-
tems. Table 4 lists the Submission Labels with their corresponding
System IDs, which can be used for quick referencing system config-
urations in Table 2 and Table 3.

For single-model system, system B5 is adopted, it provide ex-
cellent performance on data from device A and reasonable perfor-
mance on device B&C. We won’t argue this would be the best for
our proposed single system, since the final evaluation may be tested
on device B&C.

With fusion system Song HIT task1b 2, our team
(HIT SPLAB) achieves an accuracy of 76.5% on public lead-
earboad for DCASE2019 Task1B, which rank the second among
twenty eight teams.

Fusion system Song HIT task1b 3 uses the same data and
model as Song HIT task1b 2, but is trained by monitoring the val-
idation Metric B. Since the final evaluation metric will be based on
accuracy on device B&C, we expect this system may outperform
Song HIT task1b 2 in this case.

6. CONCLUSIONS

In this paper, we showed that for log Mel feature, the influence of
device distortion shows as an additive constant vector over the log
Mel spectrogram. We demonstrate that mean subtraction can elim-
inate device distortion, but it also brings information loss. Median
filtering is also effective for diminishing performance gap between
devices, but it cause drastic information loss and should only be
used in fusion systems. Most importantly, mixup not only boosts
performance on all devices, but also helps to diminish device mis-
match problem. The analysis and the proposed methods are mainly
based on the classic log Mel feature, which can be easily integrated
with powerful CNN models. For future research, model-based do-
main adaptation methods may be combined with our enhanced fea-
ture to boost performance.

7. REFERENCES

[1] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device
dataset for urban acoustic scene classification,” in Proc.
DCASE2018 Workshop, November 2018, pp. 9–13.

[2] A. E. Rosenberg, C.-H. Lee, and F. K. Soong, “Cepstral chan-
nel normalization techniques for hmm-based speaker verifica-
tion,” in Third International Conference on Spoken Language
Processing, 1994.

[3] J. Traer and J. H. McDermott, “Statistics of natural rever-
beration enable perceptual separation of sound and space,”
Proceedings of the National Academy of Sciences, vol. 113,
no. 48, pp. E7856–E7865, 2016.
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