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ABSTRACT 

Autoencoders are a very popular approach in detecting anomalies 
in a system, where reconstruction error is generally used as an 
anomaly score.  However, the reconstruction errors, generated in 
such manners, contain external noises of the system, making 
reconstruction errors as anomaly scores less effective. In this brief, 
we present an additional hypothesis that autoencoders may 
introduce additional statistical noise in the reconstruction errors as 
well.  
Our proposal includes a design of an autoencoder, lays out a 
theoretical basis of designing a noise filter for reconstruction 
errors, and outlines various aggregation methods to reduce the 
effect of the noise. While further work is still needed, we are able 
to show the accuracy improvement by using various aggregation 
methods.  

1. INTRODUCTION 

Anomaly detection is a field of detecting outlier data indicating 
deviation from the normal behavior with generally some bad 
connotation. Anomalous events happen relatively infrequently but 
are disastrous in nature.  

A popular approach in deep learning-based anomaly detection is 
to build a deep learning model, Autoencoder, to reduce the 
dimensionality of the data, and then reconstruct the input sample. 
An autoencoder belongs to a family of machine learning models, 
called neural networks, and more specifically deep neural 
networks. An autoencoder consists of an encoder, and a decoder. 

 

	

And anomalous event is when anomaly score 	𝐴# is more than a 
threshold 𝑡ℎ: 

𝒇 = 	 (		𝟎, 𝒏𝒐𝒓𝒎𝒂𝒍					𝒊𝒇	𝑨𝒏 < 	𝒕𝒉
𝟏, 𝒂𝒏𝒐𝒎𝒂𝒍𝒚	𝒊𝒇	𝑨𝒏 ≥ 𝒕𝒉 	

The encoder maps a input vector 𝑋# into a hidden representation 
𝑍#. The decoder tries to reconstruct the sample back to vector 𝑋#. 
The difference between 𝑋#	 and 𝑋# is called reconstruction error.  

reconstruction error  𝐴# = 𝑓(𝑋#	 - 𝑋#) 

Reconstruction error can be treated as an anomaly score 𝐴# 

The following issues may arise in the above system: 

A. An autoencoder network may be able to learn anomalies 
equally well with perfect reconstruction, or anomalies 
and normal events are represented by the network with 
very close reconstruction errors.	 

This issue can be solved by developing an effective 
autoencoder architecture and training it by providing 
ample amounts of training data. Training data can also 
be augmented to increase the accuracy of the system. 

B. Presence of external noises may adversely affect the 
reconstruction error of the system. 𝑋# is inherently noisy, 
and depending on the deployment, may affect the 
anomaly score for the given samples.  

If the signal-to-noise ratio (SNR) is high, there are 
methods to solve this issue using digital signal 
processing or machine learning based approaches. 
However, this issue requires a system approach to solve 
the problem if SNR is low, for example calculating 
anomalies over a longer period of time to filter out the 
short-term noises. 

C. The presence of internal noise in an autoencoder means 
that the output of the autoencoder 𝑋#	 is noisy. 
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This issue can be solved by A) properly training the 
autoencoder, B) by regularizing the training process, 
and C) by analyzing the data over a longer time etc. 

Because of the noise as mentioned above, the anomaly detection 
system may be updated as the following: 

 

 

	

2. AUTOENCODER ARCHITECTURE 

 
The proposed autoencoder is inspired by the Wavenet 
architecture. It consists of an encoder and a decoder with a 
bottleneck layer and a self-attention layer. Unlike the Wavenet 
architecture, all time steps are preserved in the bottleneck layer. 
 

 
 

* Input features 
As in the baseline system, we use a log-mel-spectrogram of the 
input 𝑋# 

● FFT calculation over 4096 or 8192 samples depending 
on the machine type, mentioned in the challenge. 

● Analysis frame size 64 ms 
● Log mel-band energy bands fn:  128 bands 
● Input time-steps to the autoencoder ts: 4 or 32 Analysis 

frames depending on the machine type. 
 
* Hyperparameters 
The following are the additional model parameters apart from ts 
and fn 

● Number of layers M 
● Number of bottlenecks bn 
● Use machine ID or not at the bottleneck layer. 

 

3. NOISE FILTERS AND AGGREGATION METHODS 

Developing effective noise filters are dependent on a deployment 
and other factors. For lack of time, we have not investigated the 
effective noise filters, and ML based approaches to noise filtering 
yet. However, following anomaly scores are evaluated and 
manually selected.  

A. Calculate the Mean Square Error over the complete 
sample (default and state-of-art)	

𝑴𝑺𝑬 =	
𝟏
𝑵
B(
𝑵

𝟏

𝑿𝒏 − 𝑿𝒏)𝟐 

Where N is the number of the frames per sample. 

B. Calculate the Median Square Error – this allows to 
filter sudden onset of the excessive noise for a short 
duration.	

	𝑀𝑒𝑑𝑖𝑎𝑛(𝑋# 		− 𝑋#)L 
 

C. The proposed error E1 calculation which involves 
adding the frequency mel bands over all the frames 
per sample, and then calculating MSE.	

𝑬𝟏 =	
𝟏
𝑵𝑳

BNB𝑿𝒏 − 𝑿𝒏

𝑵

𝟏

O

𝟐𝑳

𝟏

 

Where N is number of frames per sample, and L is the 
number of the log-mel-bands. This is helpful if the 
present noise in the system behaves like the white noise, 
and cancels itself over the period of time, resulting in 
only minor left-over noise in all of the bands.  

D. The proposed error E2 calculation which involves 
adding frequency bands over all of the frames, and 
then calculating the mean absolute error (MAE) over 
all frequency bands. 	

𝐸2 = 	
1
𝑁𝐿

BUB𝑋# − 𝑋#

V

W

U
X

W

	

Where N is number of frames per sample, and L is the 
number of the log-mel-bands. This is helpful if the noise 
present in the system behaves like white noise and 
cancels itself over a period of time, and still there is 
significant left-over noise in one or more of the bands. 
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4. RESULTS 

 
Baseline results are generated after running for 100 epochs. 
 
Table 1. Baseline results  

Machine Type AUC pAUC Loss 

ToyCar 78.77 67.58 MSE 

ToyConveyor 72.53 60.43 MSE 

Fan 65.83 52.45 MSE 

Pump 72.89 59.99 MSE 

Slider 84.76 66.53 MSE 

Valve 66.26 50.98 MSE 

 
 
All the machine types were trained for 500 epochs with early 
stopping patience of 50 epochs, and run on the test data.  
 
Table 2. Accuracy results using proposed scheme  

Machine Type AUC pAUC Loss 

ToyCar 95.64 85.99 E2 
ToyConveyor 86.52 70.81 E2 
Fan 86.71 70.58 E1 
Pump 88.71 72.04 E1 
Slider 92.36 76.11 E1 
Valve 88.61 75.34 MSE 

 
 
Table 3. Improvements 

Machine Type AUC pAUC 

ToyCar 16.87 18.41 
ToyConveyor 13.99 10.38 
Fan 20.88 18.13 
Pump 15.82 12.05 
Slider 7.6 9.58 
Valve 22.35 24.36 
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