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ABSTRACT 

Condition monitoring of machinery is critical for early detection 

and prevention of failures in factories. Recent advancements in 

machine learning is driving the development of data driven tools 

like monitoring acoustic signatures from microphones. This report 

presents a modified dense connected autoencoder (AE) and 

convolutional autoencoder (CAE) trained to minimize the acoustic 

spectrogram reconstruction error during normal operation of the 

machine. The model is pre-trained on machines of similar type and 

then fine-tuned on a specific machine. The reconstruction error is 

used as the anomaly score for an unseen acoustic sample. The 

proposed model improves performance compared to baseline 

system for the DCASE2020 challenge task2 [2]. 

Index Terms— Anomaly detection, acoustic condition 

monitoring, autoencoders, convolution autoencoders, 

DCASE Challenge 

1. INTRODUCTION 

In this technical report we present our system solution for DCASE 

challenge task 2 [1, 2] problem defined by unsupervised detection 

of anomalous sounds for machine condition monitoring. The goal 

of the challenge Task 2 is to evaluate and identify whether the 

sound emitted from a target machine is normal or anomalous. 

System of anomaly detection varies from normal classification 

problem where we have labelled set of datasets for each of the type 

of event to be classified. On contrary in context of anomaly 

detection outlier cannot form a dense cluster as available 

estimators assume that the anomalies are located in low density 

regions because in real-world factories, actual anomalous sounds 

rarely occur and are highly diverse. Therefore, exhaustive patterns 

of anomalous sounds are impossible to deliberately gather from all 

possible set of data by which anomaly can occur from different 

type of machines. Thus, challenge come under category of 

unsupervised learning where we have to detect unknown 

anomalies that were not observed in training set. Only normal 

dataset has been provided for development of system and 

validation data consist of normal and anomaly for testing.  

 

Baseline system provided for this DCASE challenge is based on 

dense connected Autoencoder system where bottleneck layer has 

far fewer neurons than typical deep learning models, so the 

autoencoder model has to find a way to represent data by letting 

go of all its noise and capture most relevant representation of 

original inputs. It is expected that autoencoder will do a really 

good job at reconstructing normal sound generated from different 

category of machines in development set, as that is exactly what 

the autoencoder was trained to do — and if we were to look at the 

reconstruction error between the input spectrogram and the 

reconstructed spectrogram, we would find that it’s quite low for 

normal category of sound and high for anomaly as it has never seen 

anomaly samples in training set. On top of baseline system, we 

have proposed convolutional autoencoder (CAE) trained to 

minimize the reconstruction error during normal operation of 

machine. We have used embedding layers for customization CAE 

for different machine Id.   

 

 

Figure 1. Id specific autoencoder model architecture 

2. DATASET 

There are six categories of dataset used for this task and were 

collected from two different source ToyADMOS [3] and the 

MIMII Dataset [4]. Each recording is a single-channel 

(approximately) 10-sec length audio that includes both a target 

machine's operating sound and environmental noise. Originally 

these datasets were collected using multi-channel microphone, 

but for this challenge first channel of multichannel recording 

downsampled to 16kHz have been provided. Each category of 

machine data gathered from 6-7 different machine Ids. 

Data is available in three sets, first development set consist of train 

data (labelled as normal), test (labelled as normal and anomaly) 

second additional data again for training (labelled as normal) and 

evaluation set (unlabeled). Table 1 shows an overview of dataset 

provided DCASE Task 2, which consists of a development 

dataset, an additional training dataset, and an evaluation dataset. 
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Class 

Development 

set 

Additiona

l set 

Evaluatio

n set 

#Trai

n 

#Test #Train #Eval 

ToyCar 4000 2459 3000 1545 

ToyConveyo

r 

3000 3509 3000 1665 

Fan 3675 1875 2846 1342 

Pump 3349 856 2417 777 

Slider 2804 1290 2370 834 

Valve 3291 879 2531 940 

Table 1. DCASE Task2 machine data for anomaly 

detection 

3. SYSTEM DETAILS 

For classification and regression task in general CNN combines 

the convolution and pooling layers. A convolution layer extracts 

local spatial patterns, and a pooling layer reduces the amount of 

data while retaining useful information. CNN’s ability to extract 

complex hidden features from high dimensional data with 

complex structure has enabled its use as feature extractors in 

outlier detection for both sequential and image dataset [6]. 

Inspired by CNN’s widely used techniques of extracting the 

patterns of spatial arrangement of features for data compression, 

outlier detection in computer vision, fraudulent detection in 

textual data and reconstruction task, we have extended the 

baseline system of dense connected AE network to Convolution 

autoencoder (CAE) for machine anomaly detection. 

CAE is an autoencoder (AE) neural network that uses convolution 

layers and pooling layers to extract the hidden patterns of input 

features (i.e., encoding), and convolution layers and upsampling 

layers with bilinear interpolation to reconstruct the features from 

the hidden patterns (i.e., decoding). By integrating convolutional 

and deconvolutional operation (convolution + upsampling) in an 

AE structure, CAE is capable of learning the spatial structure of 

input features and reconstructing these features while taking into 

account their spatial structural patterns [5]. CAE provides a 

promising result to reconstruct the spectrogram by learning the 

spatial structural pattern of samples and can thus identify those 

anomalous samples by their relatively larger differences from the 

reconstructed spectrogram. 

3.1. Features extraction 

Time frequency representation of audio has been extracted by log 

mel spectrogram as presented in baseline system of task2. So 

feature extractor computes the log Mel spectrogram of input 

signal in frame of window size 64ms with sampling rate = 16000, 

No. FFT points = 1024, hop size = 512 and number of mel bands 

= 128, and after computing the log Mel spectrogram of each clip 

of signal, acoustic feature is obtained by concatenating 

before/after several frames (5 frames) of log-mel-filterbank 

outputs then fed into the training AE/CAE model. 

 

3.2. Proposed network 

We started the development of network architecture starting with 

baseline system which gives reasonable performance on DCASE 

Task2. Further we have trained our modified AE with bigger 

bottleneck representation and proposed CAE network architecture 

with dense connection at decoder part for reconstruction of output 

spectrogram as input spectrogram (Architecture shown in Figure 

2).  

 

Based on our experimentations on development dataset we have 

observed that CAE is well suited for machine classes ToyCar, 

ToyConveyor, Fan and pump whereas modified dense connected 

AE performs well for machine class Slider and Valve. In modified 

dense connected AE, we have changed the number of dense unit 

and bigger bottleneck representation shown below (Figure. 2-

Left) 

 

 

Figure 2. Detailed Network topology (AE and CAE) 

 

In both of the network architecture we have changed non-linearity 

as exponential linear unit (eLU). We found that eLU lead not only 

to faster learning, but also to better generalization performance. It 

is defined as below  

 

𝑓(𝑥) =  {
𝑥                                       𝑖𝑓 𝑥 ≥ 0

∝ (exp(𝑥) − 1)            𝑖𝑓 𝑥 < 0
        (1) 

 

𝑓′(𝑥) =  {
1                                      𝑖𝑓 𝑥 ≥ 0

𝑓(𝑥)+ ∝                       𝑖𝑓 𝑥 < 0
       (2)      
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The eLU hyper parameter ∝ (in our case ∝ = 1) controls the value 

to which an eLU saturate for negative net. eLUs avoid the 

vanishing gradient problem as rectified linear units (ReLUs) and 

leaky ReLUs (LReLUs) do. The gradient does not vanish because 

the positive part of these functions is the identity, therefore their 

derivative is one. Thus, these activation functions are well suited 

for deep neural networks with many layers where a vanishing 

gradient impedes learning. 

 

Further the whole system is fined tuned for Id specific of each 

machine class. At first the model has been trained for each 

machine class using AE/CAE (depending on machine specific 

AUC/pAUC performance) then for each machine id model has 

been fine-tuned using trained class weight as an embedding layer 

(Figure. 1) which results in improvement of AUC and pAUC of 

each machine types. Comparison of different system with respect 

to baseline shown in Table 2 

3.3. Evaluation system 

As described in task description system has to be evaluated with 

the area under the receiver operating characteristic (ROC) curve 

(AUC) and the partial-AUC (pAUC). The pAUC is an AUC 

calculated from a portion of the ROC curve over the pre-specified 

range of interest. At first anomaly score calculated as 

reconstruction error of observed sound, then fed into AUC and 

pAUC function. For system-A, Anomaly score is calculated as  

𝐴𝜃(𝑥) =
1

𝐷𝑇
∑‖𝜓𝑡 − 𝐹(𝜓𝑡)‖2

2

𝑇

𝑡=1

                          (3) 

Where F function returns prediction from either AE or CAE based 

on class model, ‖ ‖2
  is ℓ2 norm, T is time index, 𝜓𝑡 is log-mel-

filterbank output and  D is dimension of input to AE/CAE (640). 

 

Whereas for system-B we have applied geometric mean of four 

different anomaly score calculated over ℓ2 norm  of 

reconstruction error. For system-B, fusion anomaly score is 

defined as  

 

𝐴𝜃(𝑥) = 𝐺𝑀 (𝐴𝜃
1 (𝑥), 𝐴𝜃

2 (𝑥), 𝐴𝜃
3 (𝑥), 𝐴𝜃

4 (𝑥))      (4) 

 

Where GM is the geometric mean, 𝐴𝜃
1 (𝑥)  is same as 𝐴𝜃(𝑥) of 

system-A, 𝐴𝜃
2 (𝑥) is anomaly score calculated by mean over Time 

index T followed by median over input dimension D to the 

ℓ2 norm  of reconstruction error, 𝐴𝜃
3 (𝑥)  is anomaly score 

calculated by median over Time frame T followed by median over 

input dimension D to the ℓ2 norm  of reconstruction error and 

𝐴𝜃
4 (𝑥) is anomaly score calculated by median over Time frame T 

followed by mean over input dimension D to the ℓ2 norm  of 

reconstruction error 

 

3.4. Experiment results and conclusion 

We conducted experiment on development data (including 

additional data) and compared our Id specific AE/CAE method for 

system-A and fusion system-B with baseline dense connected AE 

system using anomaly score calculator 𝐴𝜃 described in section 3.3 

There is no such thing as one method works best for all classes, 

methods lead to different results for different classes, which 

differs greatly sometimes. But in general, based on our 

experimentations on development dataset we have observed that 

CAE is well suited for machine classes ToyCar, ToyConveyor, 

Fan and pump whereas modified dense connected AE performs 

well for machine class Slider and Valve. Further Id specific fine-

tuning on respective class models boost the AUC and pAUC 

performance. Best two models system-A and system-B submitted 

to DCASE challenge, results shown below in system-A represent 

the average AUC and pAUC evaluated from Id-specific models 

and in system-B we combine multiple ways of calculating 

anomaly score together to reduce reconstruction loss for normal 

sounds (Eq 4.). So conclusively proposed AE and CAE provides 

a promising improvement in result for anomaly detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class 

Baseline 
(Average) 

System A 
(Average) 

System B 
(Average) 

AUC pAUC AUC pAUC AUC pAUC 

ToyCar 78.77 67.58 84.53 70.16 85.70 72.12 

ToyConveyor 72.53 60.43 74.53 60.87 74.19 59.87 

Fan 65.83 52.45 69.96 56.22 70.18 56.25 

Pump 72.89 59.99 75.08 63.28 74.34 63.75 

Slider 84.76 66.53 87.68 67.29 85.05 66.54 

Valve 66.28 50.98 80.72 54.07 76.66 52.83 

Table 2. Comparison of proposed systems with baseline 

system 
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