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ABSTRACT

In this paper we report an ensemble of models used to per-
form anomaly detections for DCASE Challenge 2020 Task 2.
Our solution comprises three families of models: Heteroskedas-
tic Variational Auto-encoders, ID Conditioned Auto-encoders and
a WaveNet like network. Noisy recordings are preprocessed using
a U-Net trained for noise removal on training samples augmented
with noised obtained from the AudioSet. Models operate either on
OpenL3 embeddings or log-mel power spectra. Heteroskedastic
VAEs have a non-standard loss function which uses model’s own
error estimation to weigh typical MSE loss. Model architecture i.e.
sizes of layers, dimension of latent space and size of an error esti-
mating network are independently selected for each machine type.
ID Conditioned AEs are an adaptation of the class conditioned auto-
encoder approach designed for open set recognition. Assuming that
non-anomalous samples constitute distinct IDs, we apply the class
conditioned auto-encoder with machine IDs as labels. Our approach
omits the classification subtask and reduces the learning process to
a single run. We simplify the learning process further by fixing a
target for non-matching labels. Anomalies are predicted either by
poor reconstruction or attribution of samples to the wrong machine
IDs. The third solution is based on a convolutional neural network.
The architecture of the model is inspired by the WaveNet and uses
causal convolutional layers with growing dilation rates. It works
by predicting the next frame in the spectrogram of a given record-
ing. Anomaly score is derived from the reconstruction error. We
present results obtained by each kind of models separately, as well
as, a result of an ensemble obtained by averaging anomaly scores
computed by individual models.

Index Terms— DCASE 2020 Task 2, Unsupervised anomaly
detection, Machine Condition Monitoring, Conditioned Auto-
Encoder, Variational Auto-Encoders, Heteroskedastic loss, OpenL3
embeddings, WaveNet

1. INTRODUCTION

Unsupervised anomaly detection is a problem of detecting
anomalous samples under the condition that only non-anomalous
(normal) samples have been provided during training phase. In this
paper we focus on unsupervised anomaly detection in the context
of sounds for machine condition monitoring — namely, is detecting
mechanical failure by listening.

In this paper we report our solution to the DCASE 2020 Chal-
lenge Task 2 [1, 2, 3, 4]. We present three different approaches
on tackling unsupervised anomaly detection problem. We describe
Heteroskedastic Variational Auto-Encoder, ID Conditioned Auto-
Encoder and WaveNet like methods in sections 2, 3 and 4 respec-
tively. Finally, in the section 5 we combine those three methods in
the form of an ensemble.

2. HETEROSKEDASTIC VARIATIONAL
AUTO-ENCODER

2.1. Model

A typical Variational Auto-Encoder [5] comprises two net-
works: Encoder (£) which maps an input feature vector X to a
normal distribution over the latent space (N (i, o)) where p, 0 =
E(X) are k-dimensional vectors and k is a dimension of the la-
tent space; and Decoder (D) which maps a latent vector Z to
a reconstructed point in the feature space (X = D(Z)). Sam-
pling operation is performed on distributions returned by the en-
coder in order to obtain actual points in latent space which are
fed to the decoder. Loss function is composed of two terms:
D (N (1, 0)||N(0,1)) + MSE(X, X). This is a special case of
variational inference where an intractable probability distribution
on feature space p(X) is approximated by maximizing:

logp(X) > Eqz|x) log p(X|Z) + Dr1(q(Z]X)|Ip(Z))

Distribution ¢(Z|X) is normal with diagonal covariance ma-
trix and parameters computed by the encoder, p(Z) is (0, 1), and
p(X|Z) is normal with mean given by the decoder (X) and unit
variance. The latter results with the MSE(X, X) term in the loss
function.

In our solution we propose to improve upon vanilla VAE by
changing the structure of p(X|Z). We replace unit variance with
an additional output of the decoder. Thus the decoder estimates
not only reconstruction (X) but also its precision — X,6= D(Z).
Conditional probability p(X|Z) takes the form:

p(X|Z) = p(X|D(2)) = p(X|X, &)
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Which after omitting unnecessary constants leaves us with the
following loss function:

»C(XJL,O’,X,@') = DKL(N(M,O’)HN(O, 1))+

+ B(WMSE(X, X,6) — ) "logé:) (2)
=1

where (3 is an additional parameter which helps to achieve bal-
ance between loss components [6].

We have determined experimentally that wMSE, which is high
for samples for which reconstruction is unexpectedly poor, is the
best performing anomaly score, when training model on normal
data only.

2.2. Data preparation

In the preprocessing we used a denoising network based on
Deep Complex U-Net for noise removal from the original samples
[7, 8]. The main premise of the network is to estimate a complex
mask and apply it to the spectrogram.

The model is trained to extract clean sounds from a noisy sam-
ple by minimizing difference between a clean sample and a de-
noised one. In order to reduce background factory sounds and make
the machine of interest more audible a separate model is trained for
each machine type. In each case clean samples were obtained by
extracting various mechanical sounds from the AudioSet [9]. Nor-
mal samples of other machine types were used as background and
mixed with clean samples to obtain noisy samples. This approach is
justified by the assumption that different machine types have com-
pletely different sounds, and thus a sample containing factory noise
mixed with sounds of a particular machine resembles background
noise when considering denoising a different one.

During training models are saved at some intervals correspond-
ing to different values of SNR in order to obtain denoisers that can
be used for different levels of denoising. As a result, there are 10
models for machine type. A single model contains 2.6M parame-
ters.

2.3. Model architecture and ensembles

‘We have built several models with slightly varying architectures
and latent space dimensions. In each model encoder and decoder
have the same number of hidden layers. Encoder has two outputs
for each latent space dimension. A softplus function is applied to
o to make it non-negative. There are two variants of a decoder
with different methods of estimating &. It is either estimated by a
doubled output layer (as in encoder) or by a separate network of the
same architecture (i.e. all layers are doubled). We call the second
approach Big Precision (BP). All layers except output have ELU
activation and dropout with 0.1 rate.

We trained models separately for each machine type on all
available samples (both development and additional datasets).
OpenL3 embeddings or log-mel power spectra on 5 consecutive
frames (as in the baseline model) were used as features. Anomaly
score was calculated for each frame independently. We tried the
following methods of score averaging over frames:

e mean
o median

e mean after computing medians in a 3 sec. window (winmed)
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Table 1: HVAE models
Z BP [ Ep. Averaging

Type Features Hidden layers

Den. lev.

TCar OL3 3 [512,512,256] 16 + 1.0 400 winmed
TCar OL3 3 [512,512,256] 16 2.0 500 winmed
TCar OL3 1 [512,512,256] 16 4.0 200 winmed
TCar OL3 6 [512,512,256] 16 2.0 400 winmed
TCar OL3 6 [512,512,256] 16 + 2.0 400 winmed
TCar LM 9 [640,512,256] 16 + 1.0 500 winmed
TCar LM 7 [640,512,256] 16 1.0 500 winmed
TCar LM 7 [640,512,256] 16 + 1.0 100 winmed
TCar LM 5 [640,512,256] 16 + 1.0 200 winmed
TCar LM 6 [640,512,256] 16 + 2.0 100 winmed
TConv. OL3 - [1024,512] 16 2.0 500 winmed
TConv. LM - [640,512,256] 20 + 4.0 200 winmed
fan OL3 5 [512,256,256] 8 + 1.0 50 median
fan OL3 9 [512,256,256] 8 + 2.0 50 median
fan OL3 7 [512,256,256] 8 + 4.0 200 meanlim
fan LM - [640,256,256] 20 + 4.0 100 meanlim
fan LM 2 [640,256,256] 20 4.0 100 median
fan LM [640, 256, 256] 20 1.0 50 meanlim
pump OL3 - [512,256,256] 16 1.0 500 median
pump OL3 - [512,256,256] 16 + 1.0 300 meanlim
pump OL3 [512,256,256] 8 2.0 100 median
slider LM - [640,512,256] 20 2.0 400 mean

slider LM - [640,512,256] 20 + 4.0 400 mean

slider LM 1 [640,512,256] 20 2.0 200 mean

valve OL3 9 [512,256,256] 16 + 4.0 500 meanlim
valve OL3 9 [512,256,256] 16 4.0 500 meanlim
valve OL3 9 [512,256,256] 10 1.0 500 meanlim
valve LM 2 [640,512,256] 20 + 4.0 300 mean

valve LM 3 [640,512,256] 20 + 2.0 300 mean

valve LM 4 [640,512,256] 20 + 4.0 400 mean

e mean after capping results within 3 standard deviations calcu-
lated on all frames for a given machine type (meancap)

Scores of the selected models were averaged to achieve the final
anomaly prediction.

Table 1 lists all models used to build an ensemble submitted as
Daniluk_SRPOL_task2_1.

3. ID CONDITIONED AUTO-ENCODER (IDCAE)

In this section we introduce the ID Conditioned Auto-Encoder
(IDCAE), which is an adaptation of the Class Conditioned Auto-
Encoder [10] designed for the open-set recognition problem [11].

3.1. Proposed Method

Given a machine type, we assume that we have a various IDs
of the machine. In the nomenclature from [10], we treat machines
with different IDs as distinct classes.

Our system constitutes of three main parts:

e encoder £ : X — Z which maps feature vector X from input
space X to the code E(X) in the latent space Z,
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e decoder D : Z — X which takes the code Z from Z and
outputs the vector D(Z) of the same shape as feature vectors
from X,

e conditioning made of two functions H,, Hg : Y — Z which
take the one-hot label ! from ) and map it to the vectors
H, (1), Ha(l) of the same size as codes from Z.

During feed-forward, the code Z is combined with
H,(l),Hg(l) to form H(Z,l) = Hy(l) - Z + Hg(l). Thus,
our whole system takes two inputs X, [ from X" and Y respectively
and outputs D(H (E(X),1)).

Given an input X with some ID, we call label corresponding to
this ID by the match and all other labels by non-matches. We wish
that our system reconstructs X faithfully if and only if it is a normal
sample conditioned by the matching label. Anomalies are predicted
either by poor reconstruction or attribution of samples to the wrong
IDs.

Given an input X, we set the label [ to the match with prob-
ability o or to a randomly selected non-match with probability
1 — «, where « is predefined. Thus, for a batch X1, Xo, ... X,, ap-
proximately « fraction of samples will be conditioned by matches
and 1 — o by non-matches. If [ is the match, then the loss
equals difference between the system’s output and X, that is
ID(H(E(X),1)) — X||. If [ is a non-match, then the loss
equals difference between the system’s output and some pre-
defined constant vector C' with the same shape as X, that is
ID(H(E(X),l)) —C||. In our setting ||-|| is either L; or the
square of Lo norm.

During the inference we always feed the network with matching
labels. If a sample is non-anomalous, we expect the reconstruction
to be faithful resulting in low reconstruction error. If the sample is
anomalous, there may be two cases. If the sample is nothing like
any sample during training, then auto-encoder wouldn’t be able to
reconstruct it resulting in high reconstruction error. However, if the
sample reminiscent normal samples from the other IDs, then the
auto-encoder will try to reconstruct the vector C' resulting again in
high error.

3.2. Model Architecture

In our model, we feed the network with fragments of nor-
malised log-mel power spectrograms. Feature vector space X’ con-
sists of vectors of the shape (F, M), where F is the frame size and
M is the number of mels. Given an audio signal we first compute its
Short Time Fourier Transform with 1024 window and 512 hop size,
we transform it to power mel-scaled spectrogram with M mels, and
we take its logarithm with base 10 and multiply it by 10. Finally, we
standardize all spectrograms frequency-wise to zero mean and unit
variance, and sample frames of size F' as an input to our system.

As described in subsection 3.1, our model constitutes of the
encoder F, the decoder D and the conditioning H.,, Hg. In our case
all these component are fully connected neural networks. Thus, we
have to flatten feature vectors and reshaped the output to (F, M) for
the sake of the dimension compatibility. The dense layers in E' and
D are followed by batch-norm and relu activation function, while
the dense layers in H.,, Hz are followed just by sigmoid activation
functions. E has three hidden dense layers with 128,64 and 32
units followed by the latent dense layer with 16 units. D is made
of four hidden dense layers each with 128 units. H and Hg have
both a single hidden dense layer with 16 units. We summarise the
architecture in the Table 2.
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Table 2: The architecture of IDCAE

Encoder (F) Decoder (D) Conditioning (H,, Hg)
Input (F, M) Input 16 Input #classes

Flatten DenseBlock 128 Dense 16

DenseBlock 128  DenseBlock 128  sigmoid

DenseBlock 64 DenseBlock 128  Dense 16

DenseBlock 32 DenseBlock 128

DenseBlock 16 Dense F' - M

Reshape (F, M)

DenseBlock n: Dense n, Batch-norm, relu

Table 3: The scores of the IDCAE.

Machine Baseline Dev Dev+Add

Score AUC pAUC AUC pAUC AUC pAUC
Toy car 7877 67.58 78.67 7391 88.87  85.67
Toy conveyor  72.53  60.43  69.85 58.83  68.62 58.82
Fan 65.83 5245 7690 69.29 79.29  74.88
Pump 72.89  59.99 7845 71.09 8454 7176
Slide rail 84.76  66.53 7928 66.84 8125 68.49
Valve 66.28 50.98 76.26 54.67 82.21 56.46
Average 73.34  59.66  76.57 65.77 80.80  70.35

We train our models using Adam optimizer with default param-
eters [12]. For each machine, we train our network for 100 epochs
with exponential learning rate decay by multiplying the learning
rate by 0.95 every 5 epochs. For every epoch we randomly sample
300 frames from each spectrogram.

3.3. Submissions

For our first submission Kapka_SRPOL_task2_2 we uni-
fied the hyperparameters for all the machines. Namely, we set
a = 0.75,C = 5 with FF = 10, M = 128 and trained our models
using mean absolute error. We conducted two distinct experiments
for this setup. In the first one, we trained our system just on the
train split from the development dataset. In the second one, we
train ours system on the train splits from both development and ad-
ditional datasets. In fact, training on more IDs provides a better
performance. We summarise the results in Table 3.

For our second submission, we made an ensemble for each
machine using for training the train splits from both develop-
ment and additonal datasets. We set F' = 10 and done a grid
search with « € {0.9,0.75,0.5},C € {0,2.5,5,10},M €
{128,256} trying mean square and mean absolute errors. We se-
lected 4 models for each machine that maximize average of AUC
and pAUC with p = 0.1 on the test split from the development
dataset, and for each machine we done an ensemble by selecting
4 weights such that the weighted anomaly score maximize average
of AUC and pAUC. We forward the output further to the ensemble
Daniluk_SRPOL_task2_4, which is described in section 5.

4. KOSMIDER_SRPOL_TASK2_3 (FREAK)

This submission was inspired by WaveNet [13], but applied in
the frequency domain instead of the time domain. In this approach,
a neural network predicts the next frame in the spectrogram of a
recording of interest. The difference between the prediction and
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Table 4: The scores of the individual methods and the ensemble

Machine Baseline HVAE IDCAE Freak Ensemble

Score AUC pAUC AUC pAUC AUC pAUC AUC pAUC AUC pAUC
Toy car 78.77 6758 9339 8546 9125 8736 96.73 89.30 9830 93.55
Toy conveyor 7253 60.43 8346 6898 7223 60.23 87.22 7259 89.02 73.89
Fan 65.83 5245 8094 6655 81.82 7698 9351 85.10 94.12 88.23
Pump 72.89 5999 8526 7435 88.17 8036 9587 89.53 97.31 92.56
Slide rail 8476  66.53 9564 90.74 86.49 74.65 9736 94.60 97.85 94.54
Valve 6628 5098 91.54 77.10 8459 6241 9794 91.58 98.35 92.11
Average 73.34 59.66 88.37 77.19 84.09 73.66 9477 87.11 95.82 89.14

ToyConveyor
Best mAUC: 81.46
Weights: [0.31, 0.0, 0.69]

80
9 IDGAE IDCAE
78
94
76
93
3 € 74 €
92

Best mAUC: 95.93
Weights: [0.12, 0.4, 0.48]

Best mAUC: 91.17
Weights: [0.01, 0.28, 0.71]

IDCAE

FR| FREAK FREAK

slider valve
Best mAUC: 96.20 Best mAUC: 95.22
Weights: [0.01, 0.07, 0.92] Weights: [0.01, 0.08, 0.91]

pump
Best mAUC: 94.93
Weights: (0.0, 0.3, 0.7)

IDCAE IDAE IDAE 925

FREAK a2 FREAK FREAK 775

Figure 1: Red dots indicates the weights for which mAUC (the average of AUC and pAUC) is maximized.

Table 5: Architecture of the Freak model, variant with three layers.

layer channels dilation kernel groups
ResidualBlock  m*bins 1 3 4
ResidualBlock  m*bins 2 3 4
ResidualBlock  m*bins 4 3 4
CausalConvlD  bins 8 3 4

the actual frame is used to detect malfunctions. Architecture (Ta-
ble 5) is based on one dimensional causal convolutions, and fre-
quency bins are treated as channels. Channels are split into four
groups/bands and processed separately, which is usually referred
to as grouped convolution [14]. Residual blocks follow that of
WaveNet and contain one causal convolution, followed by two par-
allel convolutions (gate and value) that are then multiplied together
and a final convolution (see Figure 4 in WaveNet [13]). The skip
connection is processed by a convolution without normalization or
activation. In a residual block all convolutions other the the causal
convolution have kernel of size one. GroupNorm [15] is used for
normalization with a single group (which makes it equivalent to
LayerNorm [16]). Normalization is applied before each convolu-
tional layer. Padding is not added and therefore first few frames
of a spectrogram are not predicted. Activation is applied just after
each convolution. Last layer has no activation. Sigmoid activation
is used for gates and ReLU is used everywhere else.

The final submission is an ensemble for which models have
varying settings. Each device type has four to fourteen models.
Most have three or four layers and hidden layers have five to six
times as many channels as the input spectrogram. The spectrograms
are created using STFT with window of 2048 samples and hop
length of 512 samples, which is then transformed to mel spectro-
grams with either 64 or 128 frequency bins. Logarithm is applied to

the resulting mel spectrogram (except for valve, where square root
is applied or nothing at all). Subsequently each frequency is stan-
dardized independently using statistics from the training dataset.
All models are trained for a specific device type, but using all avail-
able machines of that type together. Models are not given any infor-
mation about the specific machine ID. Adam [12] optimizer is used
for training with a = 0.001, 81 = 0.85 and B2 = 0.999. Batch
size is set to thirty two.

The loss is simply the mean squared error loss. However, scores
for the predictions are computed differently. First method relies on
percentiles and is used for valve and slider. Firstly for each fre-
quency bin the 95" percentile of the squared error is computed
(across time), then again 95™ percentile of these (across frequen-
cies). Second method relies on the negative log probability of the
difference between the amplitude spectra of the prediction and the
actual recording. This approach is less sensitive to symmetric noise.
Amplitude spectrum is computed based on the spectrogram aver-
aged over time. The probability is estimated using a multivariate
normal distribution fitted during training using Welford’s online al-
gorithm [17]. The covariance matrix is either full (for ToyCar),
restricted to diagonal (for ToyConveyor) or identity (for fan and
pump).

5. ENSEMBLE

We generated our last submission by combining methods from
sections 2, 3 and 4. For each machine, we standardize anomaly
scores and using grid search we select 3 weights such that weighted
anomaly score maximizes the average of AUC and pAUC on the test
split from the development dataset. The actual weights are ilustrated
in Figure 1. Our final submission Daniluk_SRPOL_task2_4
is the weighted mean of these standardized anomaly scores. The
results of individual models and the ensemble are summarised in
Table 4.
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