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ABSTRACT

This technical report outlines our solutions to Task 2 of the DCASE
2020 challenge, Unsupervised Detection of Anomalous Sounds for
Machine Condition Monitoring. The objective is to detect audio
recordings containing anomalous machine sounds in a test set, when
the training dataset itself does not contain any examples of anoma-
lies. Our approaches are based on an ensemble of a novel density
estimation based anomaly detector (Group Masked Autoencoder for
Density Estimation (GMADE)) and self-supervised classification
based anomaly detector.

Index Terms— Unsupervised anomaly detection, machine
condition monitoring, self-supervision.

1. INTRODUCTION

The IEEE Audio and Acoustic Signal Processing Society’s 2020
Detection and Classification of Acoustic Scenes and Events
(DCASE) Challenge features anomalous sound detection in ma-
chines as one of the tasks [1]. Given a training set containing au-
dio recordings solely from healthy machines, the task is to identify
recordings from defective machines in the test set.

The challenge dataset consists of two recent machine audio
datasets, ToyADMOS [2] and MIMII [3]. Data from six types
of machines, namely toy-car, toy-conveyor, fan, pump, slider and
valve, have been provided. The former two are from toy machines,
while the rest are from real machines. For each machine type,
data from 7 to 8 machine IDs has been provided. Defects of var-
ious kinds are introduced in the machines to record the anomalous
sounds in the test set.

Our submission includes ensemble of two major compo-
nents/approaches for anomaly detection.

First approach is based on a neural density estimator model,
Group-Masked Autoencoder. This density estimator has been used
to estimate the probability distribution that models the normal audio
recordings during training time. During inference we use the neg-
ative log likelihood of the test point as an anomaly score to detect
anomalies.

Our second approach leverages the idea of self-supervised clas-
sification to extract representations of the data. Specifically, for
each machine type, we train classifiers based on several popular
architectures from image classification literature, such as: Mo-
bileNetV2 [4], and ResNet [5], on collated data from all the ma-
chine IDs, towards the following tasks:

1. Being able to identify the machine ID a sample came from,

∗ Equal contribution.

2. Being able to distinguish a sample from a set of synthetically
perturbed versions of itself.

2. PROPOSED APPROACH

2.1. Group Masked Autoencoder (Group-MADE)

Our density estimation method builds on previous work on Masked
Autoencoder for Distribution Estimation (MADE). We provide a
brief description of MADE below. More details about MADE can
be found in original publication [6].

In [6], the authors propose a simple way of adapting an au-
toencoder architecture to develop a competitive and tractable neural
density estimator. The key idea lies in masking the weighted con-
nections between layers of a standard autoencoder to convert it into
a tractable density estimator. Authors show that by designing ap-
propriate masks, the output of the autoencoder can be interpreted in
an autoregressive (AR) manner for a given ordering of inputs, i.e.,
each input dimension is reconstructed solely from the dimensions
preceding it in the ordering. Multiple layers with non-linearity can
be added in this structure, which will result in a highly capable neu-
ral density estimator.

By using MADE, probability density of the vectorized input
data, x is calculated by means of the decomposition according to
the probability chain rule. In an autoregressive setting this will be,

p(x) =

D∏
d=1

p(xd|x<d) (1)

Hence, in the autoencoder output, each dimension can be in-
terpreted as one of the D conditional probability distributions as
shown above, and each output unit x̂d only depends on the previous
input units, x<d, and not the other units, x≥d = [xd, ...., xD]T . In
our work, we parameterize each conditional distribution as a mix-
ture of C Gaussians, i.e., the autoencoder outputs mean, variance
and the mixture component probabilities. E.g., for a D dimensional
input, the number of the model outputs will be, D ×C × 3. For all
our experiments, we set C = 10. This model is trained by minimiz-
ing the negative log likelihood for all training data points,

Cost = − log p(x) =

D∑
d=1

− log p(xd|x<d) (2)

For the problem in hand, following the baseline model as pro-
vided by the challenge organizers, 5 Mel spectrum frames have been
concatenated to produce 5 × 128 = 640 dimensional input vector,
where 128 Mel bands have been used. Since for this task, we are
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interested in the autoregressive ordering across frames (not across
each dimension of the input), we design a Group MADE architec-
ture, where the joint distribution can be decomposed as conditionals
over groups/frames, instead of probability distributions over the in-
dividual dimensions. Also, note that in our architecture, the Mel
bins in one frame are conditionally independent when conditioned
on all previous frames.

Let us assume, that one input sample can be represented as t =
[ti+1, ti+2, ..., ti+5]

T ∈ R640×1, where ith frame is ti ∈ R128×1.
Hence the joint density will be decomposed as,

p(t) =

5∏
i=1

p(ti|t<i) =

5∏
i=1

128∏
j=1

p(tij |t<i) (3)

Hence, all the Mel bins in an output frame ti depends on all
the Mel bins from previous frames but not on other units, i.e.,
not on Mel bins of the i-th frame, or on the Mel bins of the fu-
ture frames. Because of this group masking nature, we name our
approach as Group Masked Autoencoder for Density Estimation
(Group MADE).

So far, we have assumed that the conditionals modeled by
Group MADE were consistent with the causal frame ordering, but
in our submission we use, the following ordering mimicking deter-
ministic approach proposed in IDNN [7]. In this case we predict the
middle frame conditioned on 4 other frames, i.e.,

p(t) = p(t3|t1, t2, t4, t5)p(t1, t2, t4, t5) (4)

The proposed Group MADE model is trained using negative
log likelihood as cost function, using all the normal training data
across all IDs for a specific machine. During inference we use
the negative log likelihood as anomaly score for each test sam-
ple, and report AUC numbers. We use a fully connected net-
work as the architecture where the number of hidden layers and
the corresponding hidden units in each layer follows this struc-
ture: [128, 128, 128, 128, 32, 128, 128, 128, 128]. Finally, the out-
put layer has 640×10×3 = 19200 units. We use Adam optimizer
with 0.001 learning rate for training.

Following the baseline model, each input 10s file is split into
frames of length 64ms, with hop length of 32ms between frames.
1024-FFT and 128 Mel bins are used to featurize each frame. 5
frames are concatenated, resulting in 5 × 128 = 640 dimensional
input.

2.2. Self-Supervised Classification

Within the framework of unsupervised representational learning,
self-supervision involves withholding certain aspects of the data,
and tasking a network to predict it. The features learned by such a
network are then used for further downstream tasks.

Self-supervision using classification tasks has been previously
used for detecting anomalies in [8, 9, 10]. In these works, the
learning task involves networks to discriminate between multiple
geometric transformations, including rotations, flipping and trans-
lations, applied to images. Another approach is presented in [11],
where data is transformed onto a finite number of subspaces, be-
fore learning a feature mapping that maximizes the difference be-
tween inter-class and intra-class separations. We employ a different
strategy here. We leverage machine ID metadata, combined with
different types of audio-inspired data augmentations to set up clas-
sification tasks. Specifically, for each machine type, we train two

popular architectures from image classification domain on normal
data from all the machine IDs to:

1. Identify the machine ID of an audio sample. Apart from
the provided samples, we also consider randomized linear
combinations of the existing machine IDs to simulate new
synthetic machine IDs.

2. Distinguish a sample from a set of synthetically perturbed
versions of it. In particular, we use resampling of the time
signals of existing machine IDs, before computing the log-
Mel spectra.

For the above tasks, the neural architecture is appended with a soft-
max layer, and cross-entropy loss is used. The softmax classifica-
tion score of a test sample, measured at the output corresponding
to its true machine ID, is taken as a measure of a sample’s ”inlier”
score. Its negative is taken as the anomaly score.

2.2.1. Classifier Architectures

For the classification task, we employ two different architectures;
MobileNetV2 and ResNet-50. MobileNetV2 is introduced in [4] as
a computationally efficient improvisation of convolutional neural
networks for visual recognition tasks such as object detection, clas-
sification and semantic segmentation. We use off-the-shelf Keras
implementation of MobileNetV2, with the width multiplier param-
eter set to 0.5. A summary of the architecture is given in Table 2.
The ResNet-50 [5] (Residual Network) model consists of 5 stages
each with a convolution and Identity block. Each convolution block
has 3 convolution layers and each identity block also has 3 convo-
lution layers. For ResNet-50, we also use an off-the-shelf Keras
implementation.

2.2.2. Inputs

The inputs to the classifiers are 64 × 128 images, which are the
log-Mel spectrograms computed using the following parameters:

1. Each input 10s file is split into frames of length 64ms, with
hop length of 32ms between frames.

2. 1024-FFT and 128 Mel bins are used to featurize each frame.

3. 64 featurized frames are stacked to form a 64× 128 image.

4. The successive 64 × 128 images have an overlap of 56
frames.

2.2.3. Label Augmentation

For the label augmentation, we have applied a combination of the
following two main techniques:

• Linear combination augmentations: The provided machine
IDs are combined in pairs using randomized linear combina-
tions, and the network is trained to learn to identify the mixing
proportions. For example, for an input sample that is a mixture
of (0.4 ∗ x1) + (0.6 ∗ x2), where x1 and x2 are samples from
IDs 1 and 2, the network is trained to output [0.4, 0.6, 0, 0, . . .].
KL divergence is used as the loss for this task. We consider
linear combinations both before and after taking the log, on
Mel-spectrograms.

• Spectral warping augmentations: We perturb samples from
existing machine IDs to create new machine IDs, using image
warping. Specifically, we apply a polynomial warping using
opencv’s geometrical transformation functions.
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Table 1: DCASE 2020 Task 2 Experimental Results over Dev Data

Algorithm Crit. Toy Car Toy Conveyor Fan Pump Slider Valve

Baseline - 78.77 (67.58) 72.53 (60.43) 65.83 (52.45) 72.89 (59.99) 84.76 (66.53) 66.28 (50.98)

System 1 mean 94.97 (90.03) 81.46 (66.62) 82.39 (78.23) 87.64 (82.37) 97.09 (88.03) 90.52 (88.06)
max 95.57 (91.54) 79.74 (64.88) 82.23 (77.87) 87.87 (82.38) 96.84 (87.72) 98.46 (94.87)

System 2 mean 95.04 (90.39) 80.67 (65.90) 82.33 (78.97) 86.94 (79.60) 97.28 (89.54) 97.38 (91.21)
max 95.15 (90.86) 79.22(64.25) 82.73 (78.76) 87.05 (79.26) 97.16 (90.34) 98.53 (93.40)

System 3 mean 94.64 (89.48) 80.53 (65.58) 82.75 (79.72) 86.73 (79.60) 97.62 (89.70) 95.00 (90.32)
max 95.27 (90.23) 79.10 (64.02) 83.06 (79.55) 87.04 (79.52) 97.43 (88.91) 99.07 (96.20)

System 4 - 80.51 (71.89) 76.03 (60.70) 70.10 (53.62) 75.68 (68.97) 93.29 (83.46) 89.68 (70.95)

Operation t c n s

Conv2D - 16 1 2
Bottleneck 1 8 1 1
Bottleneck 6 16 2 2
Bottleneck 6 16 3 2
Bottleneck 6 32 4 2
Bottleneck 6 48 3 1
Bottleneck 6 80 3 2
Bottleneck 6 160 1 1
Conv2D - 1280 1 1
Avg Pool - 1280 1 -
Dense - num classes 1 -

Table 2: MobileNetV2 architecture used in this report. Each line
describes a sequence of 1 or more identical (modulo stride) layers,
repeated n times. All layers in the same sequence have the same
number c of output channels. The first layer of each sequence has a
stride s and all others use stride 1. All spatial convolutions use 3 ×
3 kernels. The expansion factor t is always applied to the input size
as described in [4]

Depending on the specific machine type, different combinations of
the aforementioned augmentations are found to give the best results
on the development test set. We implement ensembling over such
different combinations in our submission.

2.3. Ensembling

We submit 4 systems to the challenge, which are essentially ensem-
bles of different variants of the above described two approaches.

To ensemble across multiple anomaly detection models, we trans-
form the anomaly scores of each model into a standardized scale,
before combining them. The standardization transformation for any
given model is applied in a per-machine ID fashion, by computing
the mean and variance of its anomaly scores over the training data
for that machine ID. The anomaly scores are then transformed to
have zero mean and unit variance over the training data of that ma-
chine ID. Standardized anomaly scores across different models are
then combined using mean or max ensembling.

3. DATASET

The data used for this task comprises parts of ToyADMOS [12] and
the MIMII [13] Dataset consisting of the normal/anomalous oper-
ating sounds of six types of toy/real machines. Each recording is
a single-channel (approximately) 10-sec length audio that includes
both a target machine’s operating sound and environmental noise.
The following six types of toy/real machines are used in this task:

• Toy-car (ToyADMOS)
• Toy-conveyor (ToyADMOS)
• Valve (MIMII Dataset)
• Pump (MIMII Dataset)
• Fan (MIMII Dataset)
• Slide rail (MIMII Dataset)

4. RESULTS

As instructed by the challenge organizers, in this section we only
report results using the development set. In Table 1, we present
AUC results and pAUC in parentheses for both the challenge base-
line autoencoder model, and our 4 submissions for all 6 machines
averaged across IDs.
The systems 1-4 are implemented as follows:

• System 1 (M-G-R-IDcl): An ensemble of a MobileNetV2,
a ResNet-50 both trained in a self supervised manner and a
Group MADE network.

• System 2 (M-G-IDcl): An ensemble of a MobileNetV2
trained in a self supervised manner and a Group MADE net-
work.

• System 3 (M-A-G-IDcl): An ensemble of a MobileNetV2
trained in a self supervised manner, and another self-supervised
MobileNetV2 with Additive angular margin (ArcFace) [14] as
a loss function, and a Group MADE network.

• System 4 (Group MADE): A Group MADE network as de-
scribed in Sect. 2.1.
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