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ABSTRACT
This technical report describes the submission from the CP
JKU/SCCH team for Task 2 of the DCASE2020 challenge - Un-
supervised Detection of Anomalous Sounds for Machine Condi-
tion Monitoring. Our approach uses a Masked Autoregressive Flow
(MAF) model for density estimation trained solely on normal sam-
ples. Anomaly scores per input snippet are computed using the neg-
ative log likelihood of new samples. The anomaly scores per input
audio are aggregated using different metrics depending on the ma-
chine type instead of simply averaging them.

Index Terms— Anomalous Sound Detection, Masked Autore-
gressive Flows, Fault Detection

1. INTRODUCTION

Anomalous sound detection may prevent faults or malicious activ-
ities of machines and is therefore of great interest for condition
monitoring in many different industrial applications. As it is of-
ten the case that lots of normal sound samples for each machine
are available, and very little (or no) anomalous ones, Task 2 of
DCASE2020 is concerned with the “Unsupervised Detection of
Anomalous Sounds for Machine Condition Monitoring” [1]. For
this task, two datasets (ToyADMOS[2] and MIMII[3]) with a to-
tal of 6 different machine types (ToyCar and ToyConveyor from
ToyADMOS; valve, pump, fan and slider from MIMII) have been
provided. For each machine type recordings of normal and anoma-
lous sounds for a few different machines exist. Using only normal
sounds, the goal of this task is to develop an anomaly score cal-
culator that predicts a large value for anomalous sounds and a low
value for normal sounds. The systems are evaluated using the area
under the receiver operating characteristic (ROC) curve (AUC) and
the partial-AUC (pAUC) (with p = 0.1). For more details we refer
the reader to the task website1.

In this report we describe our system based on Masked Autore-
gressive Flows (MAFs) [4] to predict anomaly scores for sounds
emitted from a target machine. We also describe the performance
gain achieved by using other means of aggregating the anomaly
scores per audio sample than simply using the mean over all snip-
pets. Our source code is publicly available 2.

1http://dcase.community/challenge2020/
task-unsupervised-detection-of-anomalous-sounds

2https://github.com/patrick-praher/DCASE2020_T2_
Haunschmid_Praher_Public

The rest of the paper is structured as follows. The proposed
model, the model training and details of the selected systems are
described in Section 2. Results of our approach compared to the
baseline on the development test set can be found in Section 3. We
conclude in Section 4.

2. PROPOSED SYSTEM

Our approach is inspired by [5] who apply two different flow mod-
els for novelty detection in industrial time series data. We focus on
one of the approaches, Masked Autoregressive Flows (MAFs), and
use the negative log-likelihood (under the distribution learned by
our model) of an unseen sample (computed per snippet, aggregated
over the whole audio sample) as the anomaly score. The results are
improved by summarising the snippet-wise anomaly scores per au-
dio sample using the median (for rotating machines) and the stan-
dard deviation (for rectilinearily moving machines) instead of the
mean. The used model architecture and the proposed postprocess-
ing are described in the following.

2.1. Masked Autoregressive Flows for Anomaly Detection

Neural density estimators are one type of generative models which
is best suited for tasks where evaluating densities is more important
than generating new data. Papamakarios et al. [4] state that there are
two families of neural density estimators that are both flexible and
tractable: autoregressive models and normalizing flows. Certain au-
toregressive models (when the underlying transformation is invert-
ible) can be viewed as normalizing flows. In their paper [4] they
introduce a particular implementation of this type of flows and call
them Masked Autoregressive Flows (MAFs). They also show that
MAFs are a generalization of the earlier published RealNVP [6].
The advantage of MAFs over other similar architectures is its fast
data likelihood estimation which is essential in anomaly detection.
For an in depth introduction to MAFs and its relation to other nor-
malizing flows we refer the reader to [4].

We use conditional MAFs which is a natural extension of un-
conditional MAFs where we estimate the density p(x|y) instead of
p(x). This allows us to give side-information such as the machine
ID or machine type to our model during training. Using the ma-
chine type and machine ID as conditional label results in a 6- and
41-dimensional one-hot encoded vector y, respectively.
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Figure 1: This figure shows the AUC computed for the same model,
but using different metrics to aggregate the anomaly scores per input
audio. The black lines indicate the variance between the individual
machines.

Our implementation of MAFs is based on a publicly available
Pytorch implementation3.

We experimented with different number of frames per snippet
(2, 4, 6, 8, 10), different number of units in the hidden layer (hid-
den size ∈ 512, 1024, 2048), different number of autoregressive
layers (n blocks ∈ 2, 4, 6, 8, 10, 12), different number of hidden
layers per block (n hidden ∈ 1, 2). All models were trained using
batch normalization. The parameters of the selected systems are
summarised in Section 3.

2.2. Postprocessing

Preliminary experiments have shown that aggregating the snippet
anomaly scores into one prediction per audio sample can be im-
proved by using other metrics than the mean (as used by the base-
line). This behaviour was observed across different model types,
including a fully connected Autoencoder similar to the baseline sys-
tem, a fully convolutional Autoencoder, and Masked Autoregres-
sive Flows. The AUC for one flow based model using different
metrics for aggregating the snippet anomaly scores is shown in Fig-
ure 1. For the ToyCar, ToyConveyor, fan, and pump, several met-
rics (including mean/median) perform similarly well, whereas for
the slider and especially the valve we can observe that other metrics
such as the maximum value and the standard deviation outperform
the others.

From our experience in condition monitoring this behavior is
expected. The recorded sound of the machine types fan, ToyCar,
ToyConveyor and pump result from a rotary motion (e.g. motor and
axle components) whereas valves and sliders move rectilinearly. An
anomaly in steadily operating rotating systems is expected to pro-
duce a shift in the anomaly scores for a majority of snippets which
can be robustly detected by the median. On the contrary a fault in
the periodically moving rectilinear systems only shows in a portion

3https://github.com/kamenbliznashki/normalizing_
flows

Figure 2: This figure shows the anomaly scores computed by one
of our flow based models for some representative examples for
a rectilinearly moving machine (valve: normal id 02 00000038,
anomaly id 02 00000003) and a rotary machine (fan: nor-
mal id 06 00000043.wav, anomaly id 06 00000010.wav).

of the snippets and the anomaly score is canceled out when averag-
ing. The anomaly scores per snippet for two different examples are
shown in Figure 2, comparing a normal and an anomalous sample
for a rectilineariliy and one rotary moving machine, respectively.

Examples from other machines follow the same behavior. It can
easily be seen that averaging the anomaly scores for the rotating ma-
chine would provide a clear decision boundary. For the rectilinearly
moving machines, the anomaly scores are low most of the time and
averaging would cancel out the peaks that indicate anomalies in be-
tween.

2.3. Model training

The raw audio was preprocessed as described in the baseline sys-
tem. For simplicity we cut each spectrogram to 311 bins (10
seconds). Before passing the spectrograms into the flow based
models, each spectrogram was normalized using the mean and
standard deviation per frequency bin. Those means and stan-
dard deviations were computed on the training set (a) per ma-
chine id (norm per set=True), or (b) for the whole training set
(norm per set=False).

The audio samples in the development set were split into
training (90%) and validation (10%) randomly. For training the
Adam optimizer [7] with a learning rate of 0.0005 was used,
and each model was trained for a maximum of 1000 epochs,
with checkpointing when the validation loss improved by at least
0.5, and early stopping enabled with a patience of 50 epochs.
‘Haunschmid CPJKU task2 2‘, ‘Haunschmid CPJKU task2 3‘,
and ‘Haunschmid CPJKU task2 4‘ were trained for 220, 232, and
199 epochs, respectively.
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nh hs nb # params Val. Loss
System 2 1 2048 4 29.72M 408.42
System 3 2 1024 4 14.87M 413.85
System 4 1 1024 6 16.01M 411.59

Table 1: Parameters and training details of our MAF-based submit-
ted systems. nh: number of hidden layers per block; hs: size of
hidden layer (units); nb: number of MADE-blocks

ToyCar ToyConv. fan pump slider valve
Baseline 78.77 72.53 65.83 72.89 84.76 66.28
System 1 79.49 73.58 66.30 73.65 91.44 85.24
System 2 81.92 73.46 75.69 79.84 93.55 94.50
System 3 79.99 73.87 75.00 78.83 93.57 94.56
System 4 79.38 72.81 75.23 79.13 93.47 94.49

Table 2: AUC averaged over the machine type for the submitted
systems and the reported baseline.

2.4. Submitted Systems

In total four different systems are submitted to the chal-
lenge. ‘Haunschmid CPJKU task2 1‘ uses the provided
baseline model and applies our proposed postprocessing to
see how it compares with other submissions. The systems
‘Haunschmid CPJKU task2 2‘, ‘Haunschmid CPJKU task2 3‘
and ‘Haunschmid CPJKU task2 4‘ consist of a MAF model and
our proposed postprocessing. We ranked our models similarly as
described in the task description (in Step 3 we did not take into
account whether the averaged ranks are the same). We picked the 3
best performing models based on this ranking on the development
test set.

To keep the systems simple (as desired by the organizers) the
three previously mentioned systems each consist of one model
trained on all training data. The best performing MAF models
were among those trained using normalization per machine ID
(norm per set=True), using 4 frames per snippet, and condi-
tioning on the machine ID. Other parameters of our selected sys-
tems are summarised in Table 1.

3. RESULTS

In this section we summarise the results of our submitted systems on
the development test set and compare to the baseline results reported
on the challenge website. The AUC per machine ID is shown in
Figure 3, AUC and pAUC averaged per machine type are shown in
Tables 2 and 3.

From the results in Tables 2 and 3 it can be seen that we im-
proved the performance on the majority of the machine types (fan,
pump, slider, valve). Interestingly, those are all machines from the

ToyCar ToyConv. fan pump slider valve
Baseline 67.58 60.43 52.45 59.99 66.53 50.98
System 1 68.60 61.31 53.11 60.18 78.71 59.08
System 2 67.05 60.98 62.13 69.48 87.76 81.86
System 3 66.05 61.59 60.87 68.73 88.65 81.37
System 4 65.54 60.60 61.11 69.09 88.00 81.90

Table 3: pAUC averaged over the machine type for the submitted
systems and the reported baseline.

Figure 3: This plot shows the AUC per machine id for the reported
baseline and the four submitted systems.

MIMII [3] dataset. Looking at the AUC results per machine type in
the MIMII dataset for our best performing submission, we can see
that we perform between around 7 (pumps) and 28 (valves) percent-
age points better than the baseline. The performance improvement
is not evenly distributed across different machines per type (visi-
ble in Figure 3). For pAUC the performance gap is even larger, we
were able to improve the results by 31 percentage points for valves.
For machines from the ToyADMOS [2] dataset the results improved
only slightly (most obvious for the AUC of System 2).

4. CONCLUSION

This technical report describes our submissions for Task 2 - Unsu-
pervised Detection of Anomalous Sounds for Machine Condition
Monitoring - of the DCASE2020 challenge. We use Masked Au-
toregressive Flows to learn the density of the training set (which
only contains normal samples). Our experiments showed that nor-
malizing the spectrograms is necessary for the MAF to learn prop-
erly, and that normalizing per machine ID outperforms normalizing
the data with the global mean and standard deviation across many
architectures. We also saw that using the machine ID as label when
conditioning the MAF outperforms conditioning on the machine
type. To keep it simple we do not use any of the provided exter-
nal data, data augmentation or ensemble methods. The anomaly
score for each audio sample is computed by aggregating the nega-
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tive log likelihood scores for all snippets per audio sample. Instead
of averaging over the snippet scores (as in the baseline method) we
use the median for rotary moving machines and the standard devi-
ation for rectilinearly moving machines, respectively. Combining
both ideas we reach the same performance as the baseline for two
machine types (ToyCar, ToyConveyor) and outperform the baseline
by a large margin for the majority of machine types (fan, pump,
slider, valve).
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