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ABSTRACT
This technical report describes the ADSPLAB team’s submission
for Task1 of DCASE2020 challenge. Our acoustic scene classifi-
cation (ASC) system is based on the convolutional neural networks
(CNN). Multiple decision schemes are proposed in our system, in-
cluding the decision schemes in multiple representations, multiple
frequency bands, and multiple temporal frames. The final system
is the fusion of models with multiple decision schemes and mod-
els pre-trained on AudioSet. The experimental results show that
our system could achieve the accuracy of 84.5% (official baseline:
54.1%) and 92.1% (official baseline: 87.3%) on the officially pro-
vided fold 1 evaluation dataset of Task1A and Task1B, respectively.

Index Terms— Acoustic scene classification, convolutional
neural networks, multiple decision schemes

1. INTRODUCTION

Acoustic scene classification (ASC) aims to classify audio as one of
a set of categories such as home, street, and office [1]. Detection and
Classification of Acoustic Scenes and Events (DCASE) challenges
organized by IEEE Audio and Signal Processing (AASP) Techni-
cal Committee are one of the biggest competitions for ASC task
[2]. The large-scale dataset provided by DCASE2020 [3] presents
a challenge for the system’s generalization and low complexity.

The report describes the details of ADSPLAB team’s sub-
mission for Task1A and Task1B of DCASE2020. More specif-
ically, multiple decision schemes and external data improve the
system’s performance. Based on the convolutional neural net-
works (CNN), log-Mel spectrogram (Log-Mel), constant-Q trans-
form (CQT), Gammatone spectrograms (Gamma) and Mel Fre-
quency Cepstral Coefficients (MFCC) are used as the input to the
networks. Four independent models with different representations
are trained and the decision is made by the average voting strat-
egy, which is called the decision scheme in multiple representations
(DCMR). Multiple models are trained on different frequency bands
respectively and then ensembled, which is the decision scheme in
multiple frequency bands (DCMF). In addition, the decision scheme
in multiple temporal frames (DCMT) is operated on each frame
of the final feature maps by CNN. For Task1A, external data (i.e.
AudioSet [4]) and all the multiple decision schemes are applied.
While for Task1B, the decision schemes in multiple representations
and multiple temporal frames are applied. Under the official fold
1 evaluation setup, our system could achieve 84.5% accuracy with
0.611 log loss in the Task1A evaluation set, and 92.1% accuracy
with 0.312 log loss in the Task1B evaluation set.

† Helin Wang and Dading Chong contributed equally to this work.
* Yuexian Zou is the corresponding author.

The remainder of this report is organized as follows. Section
2 describes the proposed multiple decision schemes. Section 3 de-
tails the architectures of our networks. Section 4 and Section 5
present the details of experiments and results. Section 6 concludes
our work.

2. MULTIPLE DECISION SCHEMES

In this section, the conventional CNN-based method and our pro-
posed multiple decision schemes are introduced, which are the de-
cision scheme in multiple representations (DCMR), the decision
scheme in multiple frequency bands (DCMF), and the decision
scheme in multiple temporal frames (DCMT).

2.1. Conventional CNN-based Method

CNN-based methods were widely used in ASC task, and provided
the state-of-the-art performance [5, 6]. To be specific, given an
audio clip, 2-d time-frequency representation (e.g. Log-Mel) is
first extracted. Convolutional layers are then applied to the time-
frequency representation M ∈ RT×F to obtain the deep represen-
tation M

′
∈ Rt×f .

M
′
= fcnn (M ; θcnn) (1)

Here, fcnn denotes the operation of the convolutional layers and
θcnn denotes the model parameters of the convolutional layers. The
global pooling layer and fully-connected layers are then applied to
obtain the predicted score of classification. Let fgp, ffc be the op-
erations of the global pooling layer and the fully-connected layers,
respectively. The predicted score ŷ ∈ RN (where N denotes the
number of categories) can be obtained by

ŷ = ffc
(
fgp
(
M

′)
; θfc
)

(2)

where θfc denotes the model parameters of the fully-connected lay-
ers.

2.2. Decision Scheme in Multiple Representations

Instead of inputing single representation to the networks, multi-
ple representations are used in our system (i.e. Log-Mel, CQT,
Gamma, and MFCC). One intuitive approach [7] to apply mul-
tiple representations is inputting the multi-channel feature maps
M∗ ∈ Rn×T×F , where n denotes the number of representations.
However, different representations have different characteristics and
a single CNN network cannot model the differences effectively. In
addition, the same regions in different feature maps reflect different
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Figure 1: The illustration of DCMR.

frequency information, which may cause the mismatched problem.
To overcome these problems and make better use of the represen-
tations, we train several independent CNN models based on differ-
ent representations. As shown in Figure 1, the predicted scores of
the models are then summed up to obtain the final predicted score,
which is also known as the average voting strategy.

ŷ =
1

4
(ŷ1 + ŷ2 + ŷ3 + ŷ4) (3)

where ŷ1, ŷ2, ŷ3, ŷ4 denotes the predicted score of CNN model
with the input representation of Log-Mel, CQT, Gamma, and
MFCC, respectively.

Figure 2: The illustration of DCMF.

2.3. Decision Scheme in Multiple Frequency Bands

The spatial regions of the feature maps are treated equally in
the conventional CNN-based methods, however, different acoustic
scenes show different activity on the frequency bands [8]. There-
fore, we take the sub-spectrograms [8] as input and train several
classifiers. Different from [8], the final decision is made by the av-
erage voting strategy rather than training a global classifier, which
shows better performance in our experiments. As shown in Fig-
ure 2, for f sub-spectrograms, the final score is obtained by

ŷ =
1

f

f∑
i=1

ŷi (4)

2.4. Decision Scheme in Multiple Temporal Frames

Several temporal devisions have been studied in [9] for ASC task,
including non division, non-overlap division and overlap division.
Among them, overlap division shows the best performance. In this
work, a decision scheme in multiple temporal frames is proposed,
which feeds the whole audio clip to the network and makes deci-
sion on each temporal frame after CNN. Thus, the decision made
by each frame could take into account the information of neigh-
boring frames. As shown in Figure 3, for the final feature map
M

′
∈ Rt×f , global pooling is applied to the frequency bands and

the classifier is then applied to each temporal frames.

ŷ =
1

t

t∑
i=1

ŷi (5)

Figure 3: The illustration of DCMT.

3. NETWORK ARCHITECTURES

Our base network architectures are shown in Table 1. Task1A net-
work is a VGG [10] style network, similar to [11]. Batch normal-
ization and Rectified Linear Units (ReLU) are used following the
convolutional operations. Global pooling is applied after the last
convolutional layer to obtain fixed-length vectors, which is oper-
ated by global average pooling in the frequency axis and global
max pooling in the temporal axis [11]. Two fully-connected lay-
ers followed with a softmax function are then applied to obtain the
prediction for classification. Dropout with a ratio of 0.5 is applied
between the fully-connected layers. While for Task1B, a tiny CNN
is employed to achieve the low complexity, and other setups are the
same as Task1A.

Table 1: Network Architectures

Task1A Task1B
Conv 3× 3 @ 64, BN, ReLU Conv 7× 7 @ 32, BN, ReLU
Conv 3× 3 @ 64, BN, ReLU

Avg Pooling 4× 2 Avg Pooling 4× 2
Conv 3× 3 @ 128, BN, ReLU Conv 7× 7 @ 32, BN, ReLU
Conv 3× 3 @ 128, BN, ReLU

Avg Pooling 4× 2 Avg Pooling 4× 2
Conv 3× 3 @ 256, BN, ReLU Conv 3× 3 @ 64, BN, ReLU
Conv 3× 3 @ 256, BN, ReLU

Avg Pooling 2× 2 Avg Pooling 2× 2
Conv 3× 3 @ 512, BN, ReLU Conv 3× 3 @ 64, BN, ReLU
Conv 3× 3 @ 512, BN, ReLU

Global Pooling Global Pooling
FC 512, ReLU FC 200, ReLU
FC 10, softmax FC 3, softmax

4. EXPERIMENTS ON TASK1A

4.1. Experimental Setups

For Task1A, all the raw audios are resampled to 44.1kHz and fixed
to the certain length of 10s by zero-padding or truncating. Log-
Mel, CQT, Gamma, and MFCC are then extracted with window
size 2048 (46ms) and hop length 512 (11.6ms). The number of
frequency bands are 40, 64, 64 and 40, respectively.

In the training phase, the Adam algorithm [12] is employed as
the optimizer with the default parameters. The model is trained end-
to-end with the initial learning rate of 0.001 and the exponential de-
cay rate of 0.91 for each 200 iterations. Parameters of the networks
are learned using the categorical cross entropy loss. Batch size is
set to 64 and training is terminated after 12000 iterations. Data
augmentation methods Mixup [13] is applied in our experiments to
prevent the system from over-fitting and improve the performance.
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Table 2: Comparison of accuracy and log loss on Task1A evaluation
dataset

Model Accuracy Log loss
DCASE2019 Task1A Baseline 46.5% 1.578
DCASE2020 Task1A Baseline 54.1% 1.365

Log-Mel CNN 72.1% 0.879
CQT CNN 71.2% 0.870

Gamma CNN 76.1% 0.762
MFCC CNN 63.6% 1.029

DCMR 79.4% 0.696
Log-Mel CNN + DCMF 75.5% 1.135

CQT CNN + DCMF 74.5% 1.185
Gamma CNN + DCMF 78.8% 1.169
MFCC CNN + DCMF 60.9% 1.801

DCMR + DCMF 80.9% 0.737
Log-Mel CNN + DCMT 74.5% 0.987

CQT CNN + DCMT 73.3% 1.032
Gamma CNN + DCMT 78.2% 0.866
MFCC CNN + DCMT 67.6% 1.081

DCMR + DCMT 79.1% 0.701
CNN10 76.1% 0.634
CNN14 78.5% 0.620

ResNet38 80.3% 0.601
Wavegram-CNN 74.2% 0.830

Wavegram-Logmel-CNN 80.3% 0.606
Ensembled 82.4% 0.553

DCMR + DCMF + DCMT 81.8% 0.694
DCMR + Ensembled 84.2% 0.569

DCMR + DCMF + DCMT + Ensembled 84.5% 0.611

4.2. Experimental Results

Apart from the models with DCMR, DCMF and DCMT, AudioSet
[4] is used as the external data in our experiments. We pre-
train models of CNN10, CNN14, ResNet38, Wavegram-CNN and
Wavegram-Logmel-CNN with the audio tagging task [14] on Au-
dioSet, and then finetune these models in the ASC task. The ensem-
bled model of all the pretrained models on AudioSet is called En-
sembled. Table 2 demonstrates the test results of different models.
Among them, DCMR + DCMF + DCMT + Ensembled achieves the
highest accuracy, which shows that our proposed DCMR, DCMF,
DCMT and using external data can improve the performance for
ASC. However, DCMR + DCMF + DCMT + Ensembled performs
worse than DCMR + Ensembled on the metric of log loss, which
is because more ensembled models are employed in DCMR +
DCMF + DCMT + Ensembled and the predicted scores become
more smooth.

5. EXPERIMENTS ON TASK1B

5.1. Experimental Setups

In order to achieve the low complexity, multi-channel feature maps
(MC) are used for Task1B instead of DCMR. In addition, DCMT

Figure 4: The illustration of Task1B network.

Table 3: Comparison of accuracy and log loss on Task1B evaluation
dataset

Model Accuracy Log loss Model size
DCASE2020 Task1B Baseline 87.3% 0.437 450 KB

Log-Mel CNN 87.5% 0.428 468 KB
Log-Mel CNN + DCMT 90.8% 0.371 468 KB

MC + DCMT 92.1% 0.312 491 KB

is applied because of no extra parameters. The overall architecture
is shown in Figure 4. Three representations are used, i.e. Log-Mel,
CQT and Gamma, and the number of frequency bands are all 64.
Other experimental setups are the same as Task1A.

5.2. Experimental Results

As presented in Table 3, our model outperforms the official base-
line with the similar model size. There is no extra data used in
Task1B and we donot use any teacher-student strategy, which obvi-
ously shows the effectiveness of MC and our proposed DCMT.

6. CONCLUSION

In this technical report, we detailed our systems to tackle Task1A
and Task1B of the DCASE2020 challenge. Multiple decision
schemes (i.e. DCMR, DCMF, and DCMT) have been proposed and
greatly improved the performance for ASC task. These schemes
were designed to fit the audio characteristics, and we believe they
can offer good generalization properties for other audio processing
tasks.
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