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ABSTRACT

In our work, we present an unsupervised anomalous sound detec-
tion framework trained on DCASE2020 audio dataset. This dataset
is a subset of two datasets ToyADMOS and MIMII. We use the
state of the art anomaly detection approach, deep autoencoder ar-
chitecture trained on Mel-spectrograms. This architecture uses
LSTM-RNN units to learn the normal condition of the machine,
and is proven efficient at detecting diverse machine anomalies. Our
trained model on MIMII dataset achieves average result of 73.51%
AUC and 57.90% pAUC, resulting in an improvement compared to
the baseline system with the average results of 72.44% AUC and
57.48 pAUC. The average performance of the baseline system on
ToyADMOS dataset is 75.65% AUC and 64% pAUC, where our
model reaches to average of 73.21% AUC and 61.91% pAUC. Our
system reaches overall average of 73.41% AUC and 59.27% pAUC
on the development data set, with overall similar performance to the
baseline system with average of 73.51% AUC and 59.66% pAUC.

Index Terms— anomaly detection, anomalous sound detec-
tion, machine learning

1. INTRODUCTION

Automatic Anomalous Sound Detection (ASD) is a system that
identifies abnormal sounds emitted from a specific equipment and
is considered as an essential technology in industry 4.0 [1]. Such
systems are often used for machine condition monitoring and aim
to detect unknown anomalous sounds. In real-life practices, anoma-
lies are infrequent and are of various forms. Therefore, an extensive
and time consuming data collection process is needed to capture all
the variations of anomalies from a machine. Thus, only data from
normal condition of the machinery is collected and used as training
samples and the system only learns the natural routine of the tar-
geted equipment to recognize an abnormal behaviour. DCASE2020
challenge of unsupervised anomalous sound detection [2] focuses
on this issue, where participants are asked to use the provided au-
dio dataset and submit their results. The audio dataset provided by
organizers of this task contains recordings of 6 different types of
machines that are parts of ToyADMOS[3] and MIMII Dataset[4];
Pump, Fan, Slider, ToyCar, ToyConveyor and Valve. Each ma-
chine type has maximum of four machine id, which indicates the
machine’s identifier. The dataset is available under 3 different re-
leases:

• Development set: contains a train set and a test set for each
machine (roughly 83 hours)

• Extra training set: contains more training data for each ma-
chine (roughly 44.88 hours)

• Evaluation set: contains evaluation data for each equipment
(roughly 19.70 hours)

Furthermore, DCASE community provides a baseline system [1], a
dense autoencoder with 8 layers (4 encoding and 4 decoding layers)
each with 128 units. The bottleneck of this architecture has 8 units
with rectified linear unit (ReLU) activation function. Each layer
of the autoencoder is followed by a batch normalization layer and
a dense layer with size 640 (number of features) is defined as its
output layer. This model is trained on 5-consecutive (2*P+1, where
P is the context window size) frames of log Mel band energies of
the size 128 and 64 ms analysis window (50% hope size) resulting
an input with the dimension of 640. Evaluation metrics used for
this task are Area Under Receiver Operating Characteristic (ROC)
curve (AUC) 1 and the partial AUC (pAUC) as illustrated in 2.
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Baseline results on MIMII dataset has the average AUC of 72.44%
and average pAUC of 57.48% and on ToyADMOS dataset, it
reaches the average AUC of 75.65% and pAUC of 64%. Over-
all average results of the benchmark system on both datasets have
73.51% AUC of and 59.66% pAUC. More details of their results for
each machine type and machine id is provided in section 3.
In this work, we consider a popular Recurrent Neural Network
(RNN) architecture, called sequential Long Short Term Memory
(LSTM) to build an autoencoder for our unsupervised anomaly de-
tection system. We use Mel-spectrograms for our model’s input as
they prove robust in capturing audio features and appropriate input
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for training neural networks [5]. In the remaining of this report,
we present our model architecture (section 2) and our experimental
results (section 3) as well as the discussion of our analysis.

2. MODEL ARCHITECTURE

One of the popular architectures of Artificial Neural Networks
(ANNs) for unsupervised anomaly detection is Deep-Autoencoders
[6, 7]. This architecture aims to rebuild the given input data while
lowering the reconstruction error. The reconstruction error is the
difference between the actual input and reconstructed output. More-
over, RNNs have proven to be robust in capturing temporal be-
haviour of the data through their feedback connections and there-
fore, appropriate for time series data such as audio signals. A
LSTM-RNN cell consists of an input gate, an output gate and a
forget gate. Use of a tanh function increases the ability of this cell
to capture as much information about the past (or future for a bi-
directional cell) and a forget gate to drop the less relevant informa-
tion. A sequential LSTM-autoencoder is a stack of LSTM layers
(encoding layer), which encode the information and their outputs
are passed into a bottleneck layer, which is a LSTM layer with
smaller size together with a repeat vector layer. A repeat vector
layer, as its name states, repeates its input vector multiple times. For
a LSTM-autoencoder, it repeats the encoded information for n ts
times, where n ts is the number of time steps. The encoded infor-
mation is then passed as the input to a stack of sequential LSTM lay-
ers to reconstruct the original input. This architecture is depicted in
2. In this figure, n units is the size of the LSTM, bottleneck size
is the size of the LSTM cells used as the bottleneck and are smaller
than its previous layer. We use a fully connected time distributed
Dense layer as our autoencoder’s output layer.

3. RESULTS

The feature dimension to our model is 128 log mel-bands that are
extracted from 0.064 seconds analysis time window with 0.032 ms
overlap over 15 time steps. Our autoencoder has 4 encoding and 4
decoding layers with a bottleneck of the size 8. A fully connected
dense layer is used as the output layer of the model resulting in
755776 of total parameters. The activation function in each layer
is a tanh function and a dropout of size 0.2 is set at each encoding
layer. We use RMSProp with 0.0001 learning rate and 0.01 decay to
compile the model. The model is trained on 90% of the train set and
evaluated on the remaining 10%, over 100 epochs. We further set an
early stopping to monitor the evaluation loss with 20 patience. We
choose this set of parameters based on our parameter optimization
processes. Using early stopping, we monitor the changes in evalua-
tion loss at each training epoch and will stop at xth training epoch
(where x <= patience value), if we observe no improvement in
the evaluation loss[8].
The results of our experiments compared to DCASE2020 baseline
system is presented in the following tables.
We further investigate the results in depth for both datasets. For this
purpose, we take the reconstructed error on the train set as anomaly
threshold and create the predicted labels to calculate the confusion
matrix for each machine. First, we discuss the results of our model
on ToyADMOS, where it almost reaches the baseline system. The
outcome of our model on ToyCar, in terms of AUC and pAUC value
is lower than the benchmark. Investigating the model outputs, we
notice the higher tpr (true positive rate) of our model (86.68%) com-
pared to the baseline system (78.28%) over all anomalous samples.

Figure 1: Architecture of a sequential LSTM-autoencoder

Table 1: Results of LSTM-autoencoder compared to Dense autoen-
coder (Baseline) on ToyCar

ToyCar

Machine ID Dense-autoencoder LSTM-autoencoder
AUC pAUC AUC pAUC

01 81.36% 68.40% 80.89% 67.75%
02 85.97% 77.72% 85.35% 78.01%
03 63.30% 55.21% 60.81% 54.79%
04 84.45% 68.97% 75.47% 65.01%

Average 78.77% 67.58% 75.63% 66.39%

Table 2: Results of LSTM-autoencoder compared to Dense autoen-
coder (Baseline) on ToyConveyor

ToyConveyor

Machine ID Dense-autoencoder LSTM-autoencoder
AUC pAUC AUC pAUC

01 78.07% 64.25% 76.63% 61.26%
02 64.16% 56.01% 63.95% 54.16%
03 75.35% 61.03% 71.81% 57.47%

Average 72.53% 60.43% 70.80% 57.63%

However, baseline system achieved a lower fpr (false positive rate)
(68% recall) compared to our model (63% recall). Our model’s
performance on ToyConveyor reached 70% precision and 57% re-
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Table 3: Results of LSTM-autoencoder compared to Dense autoen-
coder (Baseline) on Fan

Fan

Machine ID Dense-autoencoder LSTM-autoencoder
AUC pAUC AUC pAUC

00 54.41% 49.37% 56.68% 49.32%
02 73.40% 54.81% 74.74% 54.24%
04 61.61% 53.26% 62.82% 52.40%
06 73.92% 52.35% 75.03% 52.25%

Average 65.83% 52.45% 67.32% 52.05%

Table 4: Results of LSTM-autoencoder compared to Dense autoen-
coder (Baseline) on Pump

Pump

Machine ID Dense-autoencoder LSTM-autoencoder
AUC pAUC AUC pAUC

00 67.15% 56.74% 68.96% 55.57%
02 61.53% 58.10% 58.63% 58.65%
04 88.33% 67.10% 92.48% 74.31%
06 74.55% 58.02% 75.69% 55.52%

Average 72.89% 59.99% 73.94% 61.01%

Table 5: Results of LSTM-autoencoder compared to Dense autoen-
coder (Baseline) on Slider

Slider

Machine ID Dense-autoencoder LSTM-autoencoder
AUC pAUC AUC pAUC

00 96.19% 81.44% 97.61% 88.52%
02 78.97% 63.68% 79.67% 64.81&
04 94.30% 71.98% 93.20% 67.06%
06 69.59% 49.02% 69.50% 49.49%

Average 84.76% 66.53% 84.99% 67.47%

Table 6: Results of LSTM-autoencoder compared to Dense autoen-
coder (Baseline) on Valve

Valve

Machine ID Dense-autoencoder LSTM-autoencoder
AUC pAUC AUC pAUC

00 68.76% 51.70% 70.99% 51.57%
02 68.18% 51.83% 66.75% 52.36%
04 74.30% 51.97% 78.06% 51.84%
06 53.90% 48.43% 55.50% 48.50%

Average 66.28% 50.98% 67.82% 51.07%

call (similar to benchmark). However, here we also have higher
fpr (53.81%) compared to the benchmark (52.77%), resulting in
slightly lower AUC and pAUC value.
We further investigate the results of our experiments for each ma-
chine in MIMII dataset. In this dataset, our model always outper-
formed the baseline system.
Our study of model’s output on fan shows that 66.16% anomalous
cases are correctly detected as anomalies and the remaining cases
is falsely detected as normal condition. We further investigate the
spectrograms of such samples and notice the similarities between

normal condition samples and such anomalies. This is shown in
figure 3. The sub-figure (a) is an anomalous condition that is falsely
detected as normal, compared to a true negative sample (sub-figure
(b)).

Figure 2: Comparison of a false negative sample (fan’s anomalous
condition detected as normal condition) with a true negative sample
(fan’s normal condition). Sub-figure (a) is an anomalous case and
is falsely detected as normal, whereas sub-figure (b) is correctly
detected as normal condition.

Looking at the training data, we notice the similarities of the spec-
trograms between the normal conditions and these false positives.
This can be seen in figure 3, where two normal condition sam-
ples are compared. Sub-figure (a) is falsely detected as anomaly,
whereas sub-figure (b) is correctly detected as normal machine con-
dition.
Moreover, we compare baseline’s confusion matrix with ours,
where we have lower fpr (baseline has 42.2% fpr while ours
achieved 39.5%). Instead, baseline system has lower false nega-
tive cases (27.45% fnr, where our model has 33.83%). Since our
model has lower fpr, we have achieved a higher AUC and pAUC.
Analyzing the results of pump for all its machine ids, our model
reaches overall 82.45% truly detected anomalies and 47.77% truly
detected healthy state (no anomalies). We have lower false positive
and false negative rate compared to the benchmark resulting higher
precision achieved by our model (70%) compared to the benchmark
(65%).
We further investigate the results of our model on slider, where we
observe a clear difference among all the machine ids of this equip-
ment, noticeable in both audio and spectrogram. Our model de-
tected almost all the anomalies. For this machine, our model per-
formed as good as the benchmark. However, in terms of precision
and classification, our model slightly outperformed the baseline by
1% (baseline accuracy is 78.99% as our model achieved 79.92%) .
Investigating the results of our model on valve, we notice higher tpr
here as well, also slightly higher fpr. Overall, our model outper-
formed the benchmark in all AUC, pAUC, precision, accuracy and
F1-score by almost 3%.
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Figure 3: Comparison of a false positive sample (fan’s normal
condition detected as anomaly) with a true negative sample (fan’s
normal condition). Sub-figure (a) is falsely detected as anomaly,
whereas sub-figure (b) is correctly detected as normal condition.

4. CONCLUSION

In this work, we used an LSTM-Autoencoder to detect anomalous
sounds emitted from machines. For this purpose, we extracted log
mel-band energies from the audio data. We segmented extracted
mels into 15 consecutive frames to capture the temporal behaviour
of the features. Our proposed system on MIMII dataset achieved
an average result of 73.51% AUC and 57.90% pAUC, resulting in a
slight improvement compared to the baseline system with an aver-
age results of 72.44% AUC and 57.48 pAUC. The baseline system
on ToyADMOS dataset achieved average 75.65% AUC and 64%
pAUC, where our model reached an average of 73.21% AUC and
61.91% pAUC. Our system performed similar to the baseline sys-
tem (total average of 73.51% AUC and 59.66% pAUC) and has to-
tal average of 73.41% AUC and 59.27% pAUC on the development
data set.
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