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ABSTRACT

The report presents the results of submission to Task 1B of Detec-
tion and Classification of Acoustic Scenes and Events Challenge
(DCASE) 2020. Main issue in this task was size limitation of 500
KB for each of submitted models. Such limitations are important
when model ought to be implemented on device with low mem-
ory size. For this task four different models based on convolu-
tional neural networks were developed, varying from data prepro-
cessing methods, data architectures etc. Crucial techniques used
in complexity management were curriculum learning and the use
of depth-wise and separable convolutions, along with ensembling
models trained on 3 and 10 classes for performance preservation.
Best models improved baseline by 10% increase in accuracy and by
60% decrease in log-loss.

Index Terms— acoustic scene classification, convolutional
neural networks, low complexity, deep learning

1. INTRODUCTION

Task 1B of Detection and Classification of Acoustic Scenes and
Events Challenge (DCASE) 2020 was a task of classifying acoustic
scenes, but with a constraint on a model size [1]. There are multiple
ways of how one could approach the problem. The first scenario
would be to create a model bigger than the given constraints and
try to reduce its size using various methods, like pruning [2], quan-
tization [3, 4, 5] or teacher-student models technique [6]. Another
scenario, that was chosen by us, was to create a model much smaller
than the given constraints, and try to expand it by adding layers or
mixing models in ensemble with respect to the assumed maximal
size.

2. DATA PROCESSING

Task 1B development set [7] consisted of 40 hours of binaural, 48
kHz 24-bit format audio samples recorded with a single device in
10 cities. The original dataset consisted of 10 classes, but they were
aggregated into 3 relatively coarse ones - indoor, outdoor and trans-
portation. Such division was particularly challenging for instance
taking into account that classes such as metro and metro station
were put into different categories.

In terms of data processing, we used log-transformed mel spec-
trograms. In terms of normalization, we had two approaches. In
the first one, for each bin of all audio samples, we calculated its

mean and standard deviation and we normalized the log-mel spec-
trograms bins by subtracting its mean and diving by its standard
deviation (we denote it as bz from bin z-score). In the second one,
we calculated the minimal power value in mel spectogram and treat-
ing it as a background level we calculated peak (pk) normalization
to adjust the recordings based on the highest frequency power level
present in the sample.

For multi-input models, for a given audio sample we calculated
normalized log-transformed mel spectrogram as described, but we
also calculated the mean over bins of this particular example be-
fore normalization to keep the original spectrogram values for better
samples differentiation. In the report, we will use the term mels to
describe the inputs to the single-input models, and mels and means
to describe the inputs to the multi-input models. Exact parameters
for each model are presented in Table 1.

Model Window Hop Mels Norm Means

SRPOL task1b 1 4096 1024 256 bz Yes
SRPOL task1b 2 4096 1024 256 bz Yes
SRPOL task1b 3 8192 8192 256 - No
SRPOL task1b 4 4096 2048 32 pk No

16384 15001 235 pk No

Table 1: Data processing parameters.

3. ARCHITECTURES AND TRAINING

The following section provides information about architectures and
training procedures used in the models development.

3.1. SRPOL task1b 1and SRPOL task1b 2

Both of the models were the weighed soft-voting ensembles of a
small convolutional neural network trained on 3 classes with mels
and means, denoted as C3Multi [8, 9], and a separable convolu-
tional neural network trained on 10 subclasses with mels, denoted
as C10Separable. The ratio in soft voting was 70% of weight for
C3Multi and 30% for C10Separable. The architecture of C3Multi
and C10Separable are presented in Tables 2 and 3, respectively.

In SRPOL task1b 1, both C3Multi and C10Separable were
trained for 100 epochs in mini-batches of size 32 using Adam opti-
mizer [10, 11]. They were both trained only on train fold of devel-
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Operation Outputs Kernel Stride Params

Input x: mels - - - -
Input y: means - - - -
x=(ConvBlock∗)(x) 16 3 1 160
x=(ConvBlock∗)(x) 32 3 2 4640
x=(ConvBlock∗)(x) 32 3 1 9248
x=(ConvBlock∗)(x) 64 3 2 18496
x=(ConvBlock∗)(x) 64 3 1 36928
x=AveragePooling(x) 64 - - -
Concatenate(x, y) 64 - - -
Dense+Softmax 3 - - 963

Total 70435
∗Conv2D+ReLU+BN

Table 2: Architecture of C3Multi model.

Operation Outputs Kernel Stride Params

SepConvBlock∗ 16 3 1 41
SepConvBlock∗ 32 3 2 688
SepConvBlock∗ 32 3 1 1344
SepConvBlock∗ 64 3 2 2400
SepConvBlock∗ 64 3 1 4736
SepConvBlock∗ 128 3 2 8896
SepConvBlock∗ 128 3 1 17664
AveragePooling 64 - - -
Dense+Softmax 10 - - 1290

Total 37059
∗SeparableConv2D+ReLU+BN

Table 3: Architecture of C10Separable model.

opment dataset, and their bests were chosen according to categorical
cross-entropy loss on evaluate fold in each epoch. In both trainings,
the learning rate for each epoch was calculated as

lr(epoch) = 0.001 · 0.9bepoch/2c. (1)

Moreover, in C10Separable a mixup augmentation technique was
used with α = 0.2 [12]. Input to both models was normalized with
bz. Data was shuffled before training and after each epoch.

In SRPOL task1b 2, both C3Multi and C10Separable were
trained on the whole development dataset and the last model after
all 100 epochs was chosen. They were also trained using Adam with
same mini-batch, learning rate schedule and loss. No augmentation
technique was used. Input to both models was normalized with bz.
Data was shuffled before training and after each epoch.

3.2. SRPOL task1b 3

The next solution was a single model, with its architecture presented
in 4.

It was trained on 3 classes using Adam optimizer on 200 epochs
with mini-batch of size 167 . The model was chosen based on best
performance in terms of accuracy on evaluate fold. It was trained
using categorical cross-entropy and learning rate was scheduled to
follow

lr(epoch) = 0.01 · 0.9bepoch/2c. (2)

Operation Outputs Kernel Params

VGGBlock∗ 16 7x1, 1x7 2000
VGGBlock∗ 48 9x1, 1x9 27936
VGGBlock∗∗ 64 11x1, 1x11 79232
ConvClassifier∗∗∗ 3 3 1731

Total 110899
∗Conv2D+Conv2D+ReLU+BN+MaxPool2D(4)+Dropout(0.3)
∗∗Conv2D+Conv2D+ReLU+BN+Dropout(0.3)
∗∗∗Conv2D+GlobalAvgPool2D+Softmax

Table 4: Architecture of SRPOL task1b 3 model.

In loss, classes were weighed by 1.4 in indoor, 0.2 for outdoor and
0.15 for transportation. The data were not shuffled.

3.3. SRPOL task1b 4

The last model was a single model with architecture presented in
5. The input features are two log mel spectrograms using sizes pre-
sented in 1. The second log mel spectrogram transposed is the same
size as the first one, thus they are concatenated and stored in two
separate channels. Following [13] and [14] the training procedure
was using Curriculum Learning divided into 3 splits starting from
the easy samples and finishing at processing all training samples.

It was trained on 3 classes using Adam optimizer on 150 epochs
with mini-batch of size 128. The model was chosen based on best
performance in terms of accuracy on evaluate fold. The learning
rate has been selected and is changing according to the cyclical
learning rate [15]. The data has been shuffled using Tensorflow
shuffle buffer of size 5% of the training data.

Additionally, apart from SpecAugment [16] other augmentation
methods like time and frequency warping, time length control have
been used[17].

Operation Outputs Kernel Params

VGGBlock∗ 64 3x3 1216
VGGBlock∗ 96 3x3 55392
VGGBlock∗ 64 3x3 55360
ConvClassifier∗∗ 3 3x3 195

Total 112163
∗Conv2D+SeLU+BN+MaxPool2D(4)+AlphaDropout
∗∗Conv2D+SpatialDropout+GlobalAvgPool2D+Softmax

Table 5: Architecture of SRPOL task1b 4 model.

4. RESULTS

In Tables 6 and 7 we present calculated models’ sizes and results ob-
tained on development dataset, respectively. For SRPOL task1b 2,
which was trained on the whole dataset, we report results before
retraining on the whole dataset.

5. CONCLUSIONS

In this report we present 4 solutions to Task 1B of DCASE 2020. In
general, we use various convolutional neural networks models with
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Model Params Type Size

SRPOL task1b 1 107494 float32 421 KB
SRPOL task1b 2 107494 float32 421 KB
SRPOL task1b 3 110899 float32 434 KB
SRPOL task1b 4 112611 float32 441 KB

Table 6: Models’ sizes summary.

Model I O T Overall

DCASE baseline 82.0% 88.5% 91.5% 87.3%
0.680 0.365 0.282 0.437

SRPOL task1b 1 92.6% 94.7% 96.5% 94.6%
0.236 0.171 0.118 0.175

SRPOL task1b 2 92.6% 94.6% 96.2% 94.47%
0.218 0.171 0.121 0.170

SRPOL task1b 3 93.1% 95.0% 90.3% 92.8%
0.226 0.173 0.371 0.256

SRPOL task1b 4 98.1% 95.0% 93.1% 95.4%
- - - 0.217

Table 7: Models results summary. For each model, first row shows
accuracy and second shows log loss. Columns represents the first
letter of each class.

log-transformed mel spectrograms. In both SRPOL task1b 1 and
SRPOL task1b 2, we mix 2 models trained on 3 and 10 classes with
single- and multi-input, differing with augmentation techniques and
training datasets. In SRPOL task1b 3, we use a VGG-style con-
volutional neural network with depth-wise convolutions. In SR-
POL task1b 4, we used further augmentation results with VGG-
style convolutional neural network. With our models, we improve
baseline by 10% increase in class-wise accuracy and by 60% de-
crease in class-wise log-loss. To improve the performance of the
system, it is necessary to adjust the network structure, convolution
type and parameter settings of the CNN. We introduced several ar-
chitectures of stacked convolution based networks. This suggests
that these architectures can be an effective tool that offers good gen-
eralization properties for various audio processing tasks. The num-
ber of misclassified samples still suggests that there is still a place
for an improvement and there is a strong demand for such solutions.
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