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ABSTRACT

A event detection system for DCASE 2020 task 4 [1] is presented.
To efficiently utilize large amount of unlabeled in-domain data,
three semi-supervised learning strategies are applied: 1) interpola-
tion consistency training (ICT), 2) shift consistency training (SCT),
3) weakly pseudo-labeling. In addition, we propose FP-CRNN,
a convolutional recurrent neural network which contains feature-
pyramid components and is based on the provided baseline [2]. In
terms of event-based F-measure, these approaches outperform the
baseline, at 34.8%, by a large margin, with an F-measure of 48.4%
for the baseline network which is trained with the combination of
all three strategies and 49.6% for FP-CRNN with the same training
strategies.

Index Terms— Sound event detection, weakly supervised
learning, semi-supervised learning, CRNN, feature pyramid

1. INTRODUCTION

The goal of sound event detection is to classify acoustic events and
find out the event boundaries in an audio clip. Applications of
sound event detection include smart home [3], health monitoring
systems [4], surveillance [5], and multimedia retrieval [6, 7]. With
the growing attention in this field, Detection and Classification of
Acoustic Scenes and Events (DCASE), a series of challenges evalu-
ating sound detection and classification systems, has been held since
2013. Task 4 aims to explore the possibility to train sound event
detection systems with a large amount of unlabeled data, weakly
labeled data which does not provide onsets and offsets of events,
and synthetic strongly labeled data. This year, participants are also
encouraged to apply sound separation to improve the sound event
detection system, with the expectation that this step can separate
overlapping sound events and extract foreground sound events from
background sound events.

The rest of this paper is organized as follows. Section 2 de-
scribes the dataset and audio preprocessing. In Section 3, we intro-
duce three semi-supervised learning strategies and propose a net-
work architecture. Experimental results are shown in Section 4.
Conclusions are given in Section 6.

2. DATASET

2.1. DESED

The dataset of DCASE 2020, domestic environment sound event de-
tection (DESED) [8], is comprised of 10-sec audio clips that were
either recorded in a domestic environment or synthesized with iso-
lated sound events and backgrounds to simulate a domestic envi-
ronment. Each audio clip contains at least one sound event corre-
sponding to one of the 10 classes. For real soundscapes, data can
be divided into 4 subsets, weakly labeled (1578 clips), unlabeled in-
domain (14412 clips), validation (1168 clips), and evaluation. All
of them are sampled at 44100 Hz. Weakly labeled data only contain
labels of events in audio clips but do not provide time boundaries
of events. Unlabeled in-domain data do not supply any labels, but
they are ensured to be in the same domain as labeled data. Both
validation and evaluation data have complete annotations, and the
difference between them is their usage. For synthetic soundscapes,
they are only divided into training and evaluation. All of synthetic
soundscapes are sampled at 16000 Hz and contain complete anno-
tations.

2.2. Audio preprocessing

Instead of directly feeding audio clips into a neural network, log-
Mel spectrograms from audio clips are extracted as inputs. To gen-
erate spectrograms, we follow the specification in baseline [2]. Au-
dio clips are resampled at 16000 Hz. Window size, hop length,
maximum frequency and number of Mel bins are 2048, 255, 8000,
and 128, respectively. We normalize extracted spectrograms along
their frequency axis. Consequently, 628×128 spectrograms would
be input features for a neural network.

3. METHODS

In this section, we briefly illustrate the method of baseline in 3.1.
Section 3.2–3.4 describe three semi-supervised learning methods.
The proposed neural network architecture, FP-CRNN, is introduced
in 3.5. Finally, 3.6 describes the post-processing.

3.1. Baseline

The baseline network architecture is formed as a convolutional re-
current neural network (CRNN) [9], which consists of 7 layers of
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CNN blocks, 2 layers of bidirectional gated recurrent unit (GRU)
[10] cells, and an attention part for producing outputs. A CNN
block is comprised of batch normalization, 2D convolution, and
gated linear unit (GLU) [11] as the activation function. Each CNN
block is followed by average pooling. It is worth noting that pooling
along the time axis is not applied after all CNN blocks. By doing
so, time resolution of features is remained, which is beneficial to
promote frame-level predictions. Both CNN blocks and GRU cells
apply 50% dropout during training. The attention part contains two
dense layers followed by sigmoid and softmax, respectively. The
sigmoid yields frame-level predictions for final sound event detec-
tion, whereas the softmax outputs are weighted summed with the
sigmoid outputs to generate clip-level predictions which are used
for training with weakly labeled ground truth.

To utilize the large amount of unlabeled data, the mean-teacher
approach [12] is applied. The mean-teacher approach contains a
student model and a teacher model. The concept of this approach
is to encourage two models to produce close predictions when
adding different noise to the input. In terms of implementation, the
two models share the same network architecture, but use different
weights. The weights of the student model are learned from train-
ing, while the weights of the teacher model are updated as an ex-
ponential moving average of the student’s weights. To carry out the
concept, the mean squared error between the outputs of the student
model and the teacher model is added into loss function. Since we
expect to use this mechanism when the model’s accuracy achieves
a certain level, a ramp-up function is applied as consistency weight
for these terms. The loss function is given as follows,

Lbaseline = Lw,BCE + Ls,BCE +w(t)(Lw,MSE + Ls,MSE) , (1)

where

w(t) = exp

[
−5

(
1− t2

T

)]
(2)

is a ramp-up function and the subscriptsw (weak) and s (strong) de-
note clip-level outputs and frame-level outputs, respectively. Sub-
script BCE and MSE denote binary cross-entropy loss and mean
square error, respectively. In the ramp-up function w(t), t denotes
the current iteration of training, and T denotes the ramp-up length
which is set to 50 epochs in our implementation.

3.2. Interpolation consistency training

We draw on the ideas of a prior work [13] which applied a state-of-
the-art semi-supervised learning method, called interpolation con-
sistency training (ICT) [14]. ICT encourages the prediction at an
interpolation of unlabeled points to be consistent with the interpo-
lation of predictions at those points, which can be shown in the
following equation,

fθ(λuj + (1− λ)uk) ≈ λfθ′(uj) + (1− λ)fθ′(uk) (3)

where fθ and fθ′ denote a student model and a teacher model, re-
spectively. In practice, λ is randomly sampled from the Beta distri-
bution. It is intuitive that learning from interpolation samples can
help the model discriminate samples that are ambiguous between
two classes. Implementation of [13] replaces all input samples with
interpolation samples and calculates the same loss function as the
baseline. However, we find that original input samples can stabilize
the model performance during training. Hence, our final loss is the
sum of the baseline loss and the loss with interpolation samples as
the model inputs.

3.3. Shift consistency training

Inspired by ICT, we came up with an idea called shift consis-
tency training (SCT), which also applies consistency regularization.
SCT encourages the prediction of time-shifted inputs to be consis-
tent with time-shifted prediction. The intuition of this method is
that model can learn shift invariance with consistency regulariza-
tion, and this may solve the problem mentioned in [8] that sound
events’ positions within the clip has a large impact on detection
performance for the long sound event classes. Therefore, SCT
allows model to learn better on temporal localization of sound
events. Moreover, shifting along the frequency axis has also been
attempted, and it further improves the model’s performance. The
reason why frequency shift helps may be due to an increase in the
diversity of data. The loss of SCT is yielded by,

LSCT = Lbaseline + Lshift , (4)

where

Lshift = Lwf,BCE + Lsf,BCE + Lst,BCE + w(t)Lst,MSE (5)

is the sum of all loss terms related to shift. wf , sf , and st denote
clip-level outputs with frequency shift, frame-level outputs with fre-
quency shift, and frame-level outputs with time shift, respectively.
Input data without shift are also used during training for the same
reason as ICT.

3.4. Weakly pseudo-labeling

Though the goal of this task is only to achieve higher accuracy in
sound event detection, we also keep track to the performance of
audio tagging problem which is the evaluation of clip-level predic-
tion. To our surprise, the performance of sound event detection is
difficult to be improved, but that of audio tagging can be easily im-
proved by changing CRNN to deeper network architecture. Due to
more convincing clip-level predictions, these deeper models can be
employed to generate reliable weak pseudo-labels.

Figure 1: The proposed weakly pseudo-labeling method.

As illustrated in Fig. 1, this weakly pseudo-labeling strategy can
be viewed as two-stage learning. The audio tagging system refers
to the deeper model, while the sound event detection system is still
CRNN. With these weak pseudo-labels, the task is converted into
pure weakly supervised learning.

3.5. Feature-pyramid CRNN

Besides exploring the method to use data efficiently, we also com-
mitted to study the network architecture itself. Considering differ-
ent duration of each sound event class, the system needs to be in-
variant against the scale of patterns. Indeed, CNN with pooling
layers already has the advantage of scale-invariance, but applying a
feature-pyramid component which utilizes multi-scale features has
been verified to further enhance this advantage. In [15], feature-
pyramid networks are applied to solve the task of object detection.
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The predictions that are inferred from different scale features are ag-
gregated to produce final object detection outputs. Such a concept
provides a significant improvement.

Sound event detection can be viewed as object detection in the
audio domain, and hence a feature-pyramid component might also
be useful. This idea has already been applied; in [16], the second
last layer in CNN part was pooled with different sizes, and these
output feature maps with different scales were then upsampled and
combined with that of the last layer. Comparing with [16], two more
CNN blocks and average pooling layers are added to the last layer
of CNN part instead of using previous layers’ outputs in our work.
Furthermore, we do not aggregate these different scale features un-
til passing through bidirectional GRUs. Then, 1×1 convolution is
applied after concatenation of different scale features to smooth the
combined features and reduce their dimension. Fig. 2 shows the
network architecture with a feature-pyramid component which is
named as FP-CRNN.

Figure 2: The architecture of FP-CRNN. Dotted portion is the base-
line CRNN, and the remaining part is the proposed feature-pyramid
component.

During evaluating FP-CRNN, we found that the performance of
audio tagging was improved by a large margin. F-measure increases
about 25% when a feature-pyramid component is added. To fully
exploit this advantage, a binary mask is generated from clip-level
outputs. The outputs which are higher than the threshold would be
set to 1, otherwise they would be set to 0. By applying the mask
to frame-level outputs, the model produces fewer false-positive pre-
dictions since the classes with low confidence are eliminated.

3.6. Adaptive post-processing

The frame-level outputs of the model may be non-consecutive, and
this would result in producing too many sound event predictions
with very short duration. Hence, the common solution is to apply
median filters to smooth these outputs. Given that each sound event
class has its own duration, using median filters with fixed window
length may not be enough. According to the statistics of events du-
ration in [17], we divide sound event classes into two group, back-
ground sounds and impulsive sounds. Sound event classes with long
duration belong to background sounds, while those with short du-
ration belong to impulsive sounds. Empirically, applying median
filters with two different window lengths for the two groups can
give a better smoothness result.

4. EXPERIMENTS

4.1. Experimental setup

For the model shown in Fig. 2, the specification of the basline’s
CRNN part is in [2], and the detail of remaining part is shown in
Table 1. For ICT, α in Beta(α, α) is the only parameter needed
to be tuned. We set α to 1 and 2 for labeled data and unlabeled
data, respectively. For SCT, the amount of time shift and frequency
shift are sampled from uniform distribution between ±2s and ±4
mel bins, respectively. A pretrained ResNet18 [18] is fine-tuned to
infer weak pseudo-labels from unlabeled data. Window length of
median filters for background sounds and impulsive sounds are 2.7s
and 0.45s, respectively. As for the parameters of training, they are
the same as the provided baseline system [2].

Table 1: The specification of FP-CRNN besides the baseline part.

Component Description

CNN block 128 channels 3×3 Conv2D
Average pooling 2×1 (time/frequency)

1×1 Conv2D 256 channels
Upsampling Bilinear upsampling

4.2. Evaluation of semi-supervised learning strategies

Table 2: The performance of models using different semi-
supervised learning strategies and post-processing. Pseudo and
Post denote weakly pseudo-labeling and adaptive post-processing,
respectively.

Strategies Results

ICT SCT Pseudo Post F1 (%) PSDS (%)

— — — — 34.8 60.0
X 40.6 65.0

X 40.4 62.8
X 38.8 63.1

X 37.4 63.3
X X X X 47.2 67.3

The proposed semi-supervised strategies and post-processing
approach are evaluated with the validation set under event-based
measurement. Macro F1 score is the primary metric, and poly-
phonic sound detection score (PSDS) [19] acts as the auxiliary met-
ric. The result of baseline CRNN models with different strategies
is shown in Table 2. The first row without any ticks represents the
baseline. All of the proposed strategies boost up the performance.
Among them, ICT and SCT appear to be more effective. We can say
that these strategies work as data augmentation techniques. By in-
creasing the diversity of input data, the model becomes more robust.
In addition, these strategies are mutually compatible, which further
improves the performance by at least 7% comparing to using only
one strategy.

4.3. Evaluation of different network architectures

In Table 3, different network architectures are evaluated with or
without applying the combination of strategies. The result shows
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Table 3: The performance of different network architectures. SED
and AT represent sound event detection and audio tagging, respec-
tively.

Methods SED AT

Model Strategies F1 (%) PSDS (%) F1 (%)

CRNN 34.8 60.0 49.7
CRNN X 47.2 67.3 44.7

FP-CRNN 39.1 64.7 75.6
FP-CRNN X 45.7 69.0 78.0

that the audio tagging performance is significantly improved when
adding the feature-pyramid component. By further exploiting
this advantage, false-positive frame-level predictions are reduced,
which improves the performance of sound event detection. It is
interesting that FP-CRNN has a relative small improvement when
used in combination with all the strategies. Our explanation is that
FP-CRNN itself has slightly better performance on audio tagging
than the deeper architecture used in weekly pseudo-labeling ap-
proach, so the strategies in Table 2 are of limited help to FP-CRNN.

4.4. Model ensemble

To further improve the performance of our work, we apply model
ensemble to both network architectures with different max consis-
tency weights used in the mean-teacher approach, ICT, and SCT.
For CRNN, the outputs of models with a maximum consistency
weight of 1.5, 2.0, and 2.5 are averaged to generate final predic-
tions. For FP-CRNN, we ensemble the models with a maximum
consistency weight of 2.0, 2.25, 2.5, 2.75, and 3.0 for final infer-
ence.

Table 4: The performance of model ensemble

Methods Results

Model Post F1 (%) PSDS(%)

Baseline 34.8 60.0
Ensemble CRNN 46.4 68.4
Ensemble CRNN X 48.4 70.1

Ensemble FP-CRNN 48.0 70.1
Ensemble FP-CRNN X 49.6 70.9

As shown in Table 4, model ensemble improves the perfor-
mance by about 2% comparing to the best performance in Table 3.
Though adaptive post-processing is verified to obtain better perfor-
mance on validation set, we are concerned that it may not work on
other datasets. The analysis in [8] shows that the model using fixed
length median filter does better on detecting a long sound event
class at the end of an audio clip. As a result, we also use the mod-
els without using adaptive post-processing to infer predictions of
evaluation set. Four ensemble systems in Table 4 are submitted to
DCASE 2020 task 4. The submitted models’ names from top to
bottom are Koh NTHU task4 SED 1, Koh NTHU task4 SED 2,
Koh NTHU task4 SED 3, and Koh NTHU task4 SED 4.

5. CONCLUSION

In this work, we explore the possibility to utilize unlabeled data and
also propose a new network architecture. Three semi-supervised
learning strategies have been applied under the same network. ICT
helps the models learn from ambiguous samples, and SCT assists
the models in learning temporal information of sound events. Both
of them can be viewed as data augmentation techniques that in-
crease the diversity of data. Weakly pseudo-labeling transforms
unlabeled data into somewhat reliable weakly-labeled data. FP-
CRNN utilizes different scales of features and is shown to improve
audio tagging performance significantly. Adaptive post-processing
is also applied to smooth model outputs. Our best model achieves
49.6% on the validation set, improving the performance by about
15% from the baseline.
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