
Detection and Classification of Acoustic Scenes and Events 2020 Challenge

AUTOMATED AUDIO CAPTIONING
Technical Report

Nikita Kuzmin
Third-year student

Moscow State University
CMC Faculty

Mathematical Methods of Forecasting Dept.
GSP-1, 1-52, Leninskiye Gory

Moscow, 119991, Russia
paniquexx@gmail.com

Alexander Dyakonov
PhD in physics and mathematics, academic adviser

Moscow State University
CMC Faculty

Mathematical Methods of Forecasting Dept.
GSP-1, 1-52, Leninskiye Gory

Moscow, 119991, Russia
djakonov@mail.ru

ABSTRACT

This task can be stated as an automated generation textual content
description from the raw audio file. We propose a method for the
automated audio captioning task. We examined the impact of aug-
mentations (MixUp, Reverb, Pitch, Over-drive, Speed) on method
performance. Our method based on modified encoder-decoder ar-
chitecture. The encoder consists of three bidirectional gated recur-
rent units (GRU). The decoder consists of one gated recurrent unit
(GRU) and one fully-connected layer for classification. The en-
coder input is log-mel spectrogram features for every part of audio
file segmented by Hann window [1] of 1024 samples with a 50%
overlap. The decoder output is a matrix with probabilities of words
for each position in a sentence. We used BLEU1, BLEU2, BLEU3,
BLEU4, ROUGEL, METEOR, CIDEr, SPICE, SPIDEr metrics to
compare methods.

Index Terms— Audio Captioning, Recurrent Neural Net-
works, Natural Language Generation, MixUp

1. INTRODUCTION

The automated audio captioning (AAC) problem can be stated as
an annotation (textual description generation) of an audio track via
automated system (for example neural networks). This task is very
important, because the audio classification approach is unable to ex-
plain inner relationships in audio. Audio captioning methods can
model concepts, physical properties of objects and environment,
and high-level knowledge (ex. ”a clock rings three times”). Also,
audio captioning is more challenging than classification because it
consists of two main tasks:

• audio processing,
• text generation.

There were two papers before about audio captioning - [2], [3]
At first glance, the audio captioning task seems like image cap-

tioning, but there are some significant differences. Humans can eas-
ily annotate pictures, since every object on the image has a specific
shape, color, size, etc. Most people more familiar with a visual
representation, than with an . For example, if we consider mel-

spectrogram audio representation, we can notice the following dif-
ferences between common images [4]:

1. Sound is ”transparent” - highly likely one pixel of an image,
which is assumed to belong to a single object. In spectro-
grams it is not true.

2. The axes of spectrograms do not carry the same meaning, but
in pictures x and y have the same meaning.

3. The spectral properties of sound are non-local. It means that
neighboring pixels can’t be assumed to belong to the same
object like in pictures.

Results of an automated audio captioning algorithm can be used
in different spheres: for hearing-impaired people, in manufacture
(for more accurate emergencies description), video analysis (we can
describe video more explicitly with detailed information about the
audio track).

Section 2 describes the dataset for evaluation, Section 3 tells
about proposed method (preprocessing, augmentations, neural net-
work architectures, post processing). The evaluation procedure, ex-
periments, results are presented in Section 4. The conclusion and
future work are described and discussed in Section 5.

2. DATASET DESCRIPTION

The task uses the freely available Clotho dataset [5]:
It consists of audio samples of 15 to 30 seconds duration, each

audio sample has five captions of 8 to 20 words long.
There are a total of 4981 audio samples with 24 905 captions.
Clotho has a 4365 unique words and is divided into three splits:

development (60%), evaluation (20%) and testing (20%). All words
appear proportionally between splits.

Words that cannot be divided using the above scheme of 60-20-
20 appear at least one time in the development split and at least one
time to one of the other two splits!

2.1. Audio samples information

Clotho audio data are extracted from an initial set of 12 000 audio
files collected from Freesound [6]. The 12k audio files have du-
rations ranging from 10s to 300s, no spelling errors, good quality



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

(44.1kHz and 16-bit), and no tags on Freesound indicating sound
effects, music or speech. Before extraction, all 12k files were nor-
malized and the leading and trailing silences were trimmed.

2.2. Captions information

The captions were gathered by employing the crowdsourcing plat-
form Amazon Mechanical Turk and a three-step framework. The
three steps are:

1. audio description;

2. description editing;

3. description scoring.

For detailed description see [7].
Every audio file in Clotho dataset has five different captions.

3. PROPOSED METHOD

3.1. Dataset preprocessing

Our method takes as an input raw, mono audio data with 44.1 kHz
sampling frequency and 16 bits sample width and extracts log-mel
spectrogram features for every part of audio file segmented by Hann
window of 1024 sample with 50% overlap. For each resulting part
we extract Nfeats = 128 features.

Captions preprocessing was taken from DCASE2020 Baseline
code [8], which takes as an input csv file with names of audio files
in the first column and five captions per each audio file in the fol-
lowing five columns. Baseline code encodes caption with the Bag
of Words model. Each sentence starts from ”start of sentence” token
(<SOS>) and ends by ”end of sentence” token (<EOS>).

3.2. Data augmentation

• MixUp
First of all, we used Input MixUp implementation, which was
introduced in [9], with some differences in target mixing.

1. Audio tracks mixing
The key idea is to mix random input audio files. For ex-
ample, suppose we have in our train dataset audio xi and
audio xj . The resulted audio after Input MixUp applica-
tion will be:

x = λxi + (1− λ)xj , where λ ∼ Beta(α, α), (1)

where α = 16

2. Captions mixing: Suppose we have yi and yj captions
corresponding to xi and xj , yi has length li and yj – lj .
There are several ways to implement captions mixing:

• Simple concatenation ([yi, yj] or [yj , yi])
• For definiteness, we assume li > lj . We suppose yki

- k-th word in yi. After concatenation we will get
[y1i , y

1
j , y

2
i , y

2
j , . . . y

li
i ]

• Random words shuffling after concatenation

Our experiments have shown that MixUp with simple
concatenation achieves the best score.

Augmentations below were implemented by pysndfx library
[10].

• Reverb
with reverberance, room scale, stereo depth parameters
from U [0, 50] distribution.

• Pitch
with shift parameter from U [−300, 300] distribution.

• Overdrive
with gain parameter from U [2, 10] distribution.

• Speed
with factor parameter from U [0.9, 1.1] distribution.

Every type of augmentations was applied online with 0.5 probabil-
ity to each sample.

3.3. Neural networks architectures

In this work we will compare following network achitectures:

1. DCASE2020 Baseline [11]:
the baseline neural network consists of an encoder and de-
coder.
The encoder is a three-layered bidirectional GRU [12] with
tanh activation function and a residual connection [13] be-
tween the second and the third layer. All but the last layer
have 128 cells and the last one 256. This results corre-
spondingly to 256 and 512 total cells due in bidirectionality
(2× 128 and 2× 256).
The decoder is a one-layered GRU with tanh activation func-
tions, followed by a fully-connected layer with softmax ac-
tivation functions. The GRU layer consists of 256 cells, it
takes as input the last output of the encoder and produces
a matrix Y ∈ RNwords×K , where Nwords – words amount in
vocabulary, K – maximum tokens in prediction.
An illustration of the DCASE2020 Baseline is in Figure 1.

2. Modification v1 DCASE2020 Baseline
We modified DCASE2020 Baseline network architecture by
adding an embedding layer (based on mean aggregation) be-
tween encoder and decoder.

3. Modification v2 DCASE2020 Baseline
We modified DCASE2020 Baseline network architecture by
adding a fully-connected layer between encoder and decoder.

4. Modification v3 DCASE2020 Baseline
We modified DCASE2020 Baseline network architecture by
adding a attention between encoder and decoder.

An illustration of the DCASE2020 Modifications v1, v2, v3 are in
Figure 1 and Figure 2.

3.4. Training

The neural networks were trained using Adam optimizer with the
0.001 learning rate and crossentropy loss. Dropout rate was 0.5 and
0.25 for the input and recurrent connections, respectively, in the
GRUs of the encoder and the decoder, and the batch size was 80.
The neural network were trained for 50 epoches on GPU NVIDIA
RTX 2080 TI. The code was written on PyTorch framework.

3.5. Post-processing

We have noticed that predicted captions have a lot of se-
quences with repeated tokens. So we decided to compress each



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

x1

1 ... T

1 ... T

+

1 ... T

++

1st 
bidirectional 
GRU Layer

2nd 
bidirectional 
GRU Layer

3rd 
bidirectional 
GRU Layer

1 ... K

Encoder

1st GRU Layer

FC FC FC Fully-connected layer

...

Decoder

... xT

y1 ... yK

MEAN

FC

Modification v1

Modification v2

Figure 1: DCASE2020 Baseline and v1, v2 modifications architec-
tures

sequence with repeating tokens in captions into one element
(ex. caption [<SOS>, a, a, a, b, g, g, c,<EOS>] −→compress

[<SOS>, a, b, g, c, <EOS>]), but the SPIDEr score got worse.

4. EVALUATION

We used a lot of metrics for evaluation – BLEU1, BLEU2, BLEU3,
BLEU4 [14], ROUGEL [15], METEOR [16], CIDEr [17], SPICE
[18], SPIDEr. SPIDEr - main metric [19], so we will describe it in
details:

• CIDEr (Consensus-based Image Description Evaluation) –
metric, which was introduced in [17]. CIDEr measures the
similarity of generated sentence against a set of ground truth
sentences written by humans. This metric shows a high agree-
ment with humans judgments of consensus. Using sentence
similarity, the notions of grammaticality, saliency, importance
and accuracy (precision and recall) are inherently captured by
CIDEr metric.

• SPICE (Semantic Propositional Image Caption Evaluation) –
metric, which was introduced in [18]. SPICE captures human
judgments over model-generated captions better than other au-
tomatic metrics (CIDEr, METEOR, etc.). Furthermore, SPICE
can answer questions such as ”Which caption-generator best
understands colors?” and ”Can caption-generators count?”.

• SPIDEr - metric, which is an average of CIDEr and SPICE
metrics, so it has combined benefits from both metrics:

SPIDEr =
CIDEr + SPICE

2
(2)

x1

1 ... T

1 ... T

+

1 ... T

++

1st 
bidirectional 
GRU Layer

2nd 
bidirectional 
GRU Layer

3rd 
bidirectional 
GRU Layer

1 ... K

Encoder

1st GRU Layer

FC FC FC Fully-connected layer

...

Decoder

... xT

y1 ... yK

Attention

Figure 2: Modification v3 (attention) DCASE2020 Baseline archi-
tecture

4.1. Experiments

In this part we will compare DCASE2020 Baseline with its modifi-
cations (v1, v2, v3).

We will also compare DCASE2020 Baseline model and its
modifications (v1, v2, v3) with different data augmentations:

1. MixUp;

2. Reverb, Pitch, Overdrive, Speed (Another augs);

3. MixUp, Reverb, Pitch, Overdrive, Speed (All augs).

Let’s describe five approaches (1-4 were submitted):

1. Ensemble of 4 models, which are described below. We select
unique predicted tokens by every model for each audiofile,
then concatenate 4 strings of tokens.

2. This approach is based on Modification v2 of DCASE2020
Baseline and MixUp augmentation. It was trained with lr=
0.0001.

3. This approach is based on Modification v2 of DCASE2020
MixUp, Reverb, Pitch, Overdrive, Speed augmentations. It
was trained with lr= 0.0001.

4. This approach is based on Modification v3 of DCASE2020
Baseline and MixUp augmentation. It was trained with
ReduceOnPlateau scheduler with step= 5 and starting lr=
0.0004.



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

5. This approach is based on Modification v3 of DCASE2020
Baseline and Reverb, Pitch, Overdrive, Speed augmenta-
tions. It was trained with ReduceOnPlateau scheduler with
step= 5 and starting lr= 0.0001.

Results can be found in yaml files.

5. CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this paper we made an effort to improve machine understanding
of audio data. We showed the impact of augmentations (MixUp,
Reverb, Pitch, Overdrive, Speed) in the audio captioning task. We
compared different modifications of DCASE2020 Baseline archi-
tecture. The best performance was showed by DCASE2020 Modi-
fication v2 with all augmentations.

5.2. Future work

We used Input MixUp implementation in this paper. In [20] paper
authors presented Manifold MixUp implementation, which is more
accurate and robust.

Currently there are no experiments with transformer architec-
tures in papers about audio captioning task. We suppose that trans-
former architecture can reach competitive result.

6. REFERENCES

[1] https://en.wikipedia.org/wiki/Hann function.

[2] K. Drossos, S. Adavanne, and T. Virtanen, “Automated audio
captioning with recurrent neural networks,” 2017.

[3] M. Wu, H. Dinkel, and K. Yu, “Audio caption: Listen and
tell,” ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), May
2019. [Online]. Available: http://dx.doi.org/10.1109/ICASSP.
2019.8682377

[4] D. Rothmann, ”What’s wrong with CNNs and spectro-
grams for audio processing?” https://towardsdatascience.com/
whats-wrong-with-spectrograms-and-cnns-for-audio-processing-311377d7ccd/,
2018.

[5] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: An audio
captioning dataset,” 2019.

[6] https://freesound.org/.

[7] S. Lipping, K. Drossos, and T. Virtanen, “Crowdsourcing a
dataset of audio captions,” 2019.

[8] http://github.com/audio-captioning/dcase-2020-baseline/.

[9] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” 2017.

[10] C. Thome, ”pysndfx library” https://pypi.org/project/
pysndfx/.

[11] https://github.com/audio-captioning/dcase-2020-baseline/.

[12] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” 2014.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” 2015.

[14] K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, “Bleu: a
method for automatic evaluation of machine translation,” 10
2002.

[15] C.-Y. Lin, “Rouge: A package for automatic evaluation of
summaries,” 01 2004, p. 10.

[16] A. Lavie and A. Agarwal, “Meteor: An automatic metric for
mt evaluation with high levels of correlation with human judg-
ments,” pp. 228–231, 07 2007.

[17] R. Vedantam, C. L. Zitnick, and D. Parikh, “Cider:
Consensus-based image description evaluation,” 2014.

[18] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice:
Semantic propositional image caption evaluation,” 2016.

[19] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy,
“Improved image captioning via policy gradient optimization
of spider,” 2017 IEEE International Conference on Computer
Vision (ICCV), Oct 2017. [Online]. Available: http:
//dx.doi.org/10.1109/ICCV.2017.100

[20] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas,
A. Courville, D. Lopez-Paz, and Y. Bengio, “Manifold mixup:
Better representations by interpolating hidden states,” 2018.


