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DCASE 2020 CHALLENGE TASK 1B: LOW-COMPLEXITY CNN-BASED FRAMEWORK

ABSTRACT

This report presents a low-complexity CNN-based deep learning
framework for acoustic scene classification task (ASC). The frame-
work uses time-frequency representation (i.e. spectrogram) referred
to as front-end feature extraction. The extracted spectrograms are
fed into a CNN-based architecture, referred to as the baseline, for
classification. Next, quantization and pruning techniques are ap-
plied on the pre-trained baseline to finetune and further compress
the network size, eventually resulting in low-complexity models
with competitive performance.

Index Terms— Convolutional Neural Network (CNN), prun-
ing, quantization, mixup data augmentation, spectrogram, Gamma-
tone filter.

1. INTRODUCTION

Deep Learning has become a mainstream approach for various re-
search fields such as computer vision, natural language processing,
and recently emerging research field named “machine hearing” [1].
Applied to acoustic scene classification (ASC), one of main tasks
of “machine listening”, CNN-based network architectures have sur-
passed human performance [2]. However, the state-of-the-art sys-
tems have come at an increasing cost of computation due to com-
plex models used, making them infeasible for edge applications.
Indeed, the summary of system characteristics [3] reported in the
recent DCASE 20219 indicated that almost the architectures used
in top ten submissions exceeded 6 M non-zero parameters. Some
systems presented even much more complex models that have more
than 100 M non-zero parameters. To deal with this challenge, model
compression techniques have drawn increasing attention in recent
years. Two main approaches of compression are quantization and
pruning. Recently, Tensorflow framework 2.0 provides a complete
guide for both the compression methods mentioned in [4]. Though
such model compression techniques have been widely studied in
machine learning and computer vision communities, they have less
investigated for audio tasks.

In this report, we firstly propose a deep learning framework
with low-complexity CNN-based model for the ASC task, referred
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to as the baseline. Next, we adopt the quantization and pruning tech-
niques to further compress and fine-tune the pre-trained CNN base-
line to obtain a small-footprint model. We use the DCASE 2020
Task 1B dataset to evaluate the framework with/without using these
compression techniques and compare their performance to it of the
DCASE baseline.

2. DCASE 2020 TASK 1B DATASET

The DCASE 2020 Task 1B dataset [5] was recorded by a single de-
vice namely A with binaural channel and sample rate of 48kHz. The
dataset comprises of 10 acoustic scenes that are grouped into three
main contexts: indoor (airport, metro-station, and shopping-mall),
outdoor (park, public-square, street-pedestrian, street-traffic), and
transportation (bus, metro, tram). In this report, we obey DCASE
2020 challenge to separate development set into training and test
subsets used for training and testing processes, respectively. The
accuracy on the test subset is then reported.

3. CNN-BASED FRAMEWORK ARCHITECTURE
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Figure 1: The high-level architecture and processing sequence of
the proposed framework.

The proposed framework is described in Fig. 1. Initially, raw
audio signal from the channel 1 is transformed into Gammatone
spectrogram (Gamma) [6] with parameters summarized in Table 1.
Then, mixup data augmentation [7, 8] is applied on entire spectro-
grams of 128 X 428 to generate new spectrograms. Next, the mixup
spectrograms are fed into the CNN-based network.

The CNN-based network configured as Table 2 comprises four
Conv. blocks and one Dense block, which are performed by Convo-
lutional layer (Cv[kernel size]), Rectified Linear Unit (Relu), Batch
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Table 1: Setting of spectrogram transformation.

Factors Setting
Spectrogram Gammatone
Window size 2048
Hop size 1024
The number of FFT points 4096
The number of filter banks 128
Min frequency 10 Hz

Table 2: CNN-based network architecture

Architecture layers Output
Input layer (entire spectrogram) 128x428
Conv. Block 01  Bn - Cv [3%x3] - Relu - Bn - Mp [2x4] - Dr (20%) 64x107x32
Conv. Block 02 Bn-Cv [3%x3]-Relu-Bn-Mp[2x2]-Dr(25%) 32x54x64
Conv. Block 03  Bn-Cv[1x1]-Relu-Bn-Mp[2x4]-Dr(30%) 16x13x128
Conv. Block 04 Bn-Cv [1x1]-Relu - Bn - Gmp - Dr (35%) 256
Dense Block Fl1 - Softmax layer 3

normalization (Bn), Max pooling (Mp[kernel size]), Global max
pooling (Gmp), Drop out (Dr(Drop ratio)), Fully connected layer
(F1), and Softmax layers.

After training the CNN-based network, two compression tech-
niques, 8-bits training-aware quantization and pruning mentioned
in TensorFlow Model Optimization Toolkit [4], are applied to fine-
tune the pre-trained CNN-based network. The resulting model has
lower complexity, but remains competitive performance.

4. HYPERPARAMETER SETTING

The CNN-based network was implemented using Keras framework.
Network training made use of the Adam optimizer [9] with 100
training epochs, a mini batch size of 100. As using mixup data
augmentation makes labels no longer one-hot, Kullback-Leibler
(KL) [10] divergence loss was therefore used for network training.
The KL-divergence loss reads

N
n A
Liw® = yoroe{ Y2 b Dol
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where 6 denotes the trainable network parameters and A denotes
the ¢2-norm regularization coefficient, set to 0.0001. N is the num-
ber of training samples, y; and ¥; denote expected and predicted
results, respectively.

5. EXPERIMENTAL RESULTS

Table 3: Performance compared to DCASE 2020 Task 1B baseline

System Acc.(%) Non-zero para. (KB)
DCASE 2020 87.3 450.0
CNN network 93.0 245.5
CNN network w/ quantization 91.9 61.5
CNN network w/ pruning 90.5 122.8

The obtained results are shown in Table 3. Without compres-
sion, the proposed CNN outperforms the DCASE baseline, improv-
ing the accuracy by 5.7% absolute. Compressing the CNN net-
work using 8-bits quantization and pruning techniques, we achieve
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the compressed networks with a model size 4 and 2 times smaller
than the original model, 61.5 KB and 122.8 KB, respectively, at
the cost of decreasing accuracy. Compared to the DCASE baseline,
the compressed models have 7.4 and 3.7 times smaller footprints
but still achieve better performance, 91.9% and 90.5%, respectively,
compared to 87.3% obtained by the baseline.

6. CONCLUSION

In this work, we have investigated a CNN-based framework with
a small number of parameters for the DCASE ASC task. Thank
to quantization and pruning techniques supported by Tensorflow
framework, the proposed network is further compressed to have less
non-zero parameters, but still outperforms the DCASE 2020 Task
1B baseline. Future work would be devoted to investigate network
distillation techniques [11] where the original CNN model could
be used to guide the fine-tuning of the compressed and quantized
models.
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