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ABSTRACT

In this report, we describes the SHNU team’s submission to
the DCASE-2020 challenge Task1-A (Acoustic Scene Classifica-
tion with Multiple Devices). In our submissions, three different
deep models are investigated. The first one is a ResNet-based model
with receptive-field regularization. The second one is a common
two-dimensional CNN model with perceptual weighted power spec-
trogram as input. The third one is a self-attention based model with
only Transformer encoder architecture which is specially designed
for acoustic scene classification. In addition, we proposed a device-
enhancement data augmentation method, together with the conven-
tional mix-up and specAugment to improve the model robustness
to multiple devices. Experimental results on the foldl validation
set show that these models are complementary in some extent. We
prepared all of our submissions without the use of any external data
except for the official baseline embeddings. The logistic regression
score fusion is used to fuse the softmax outputs of single-systems.

Index Terms— Acoustic Scene Classification, ResNet, CNN,
Transformer

1. INTRODUCTION

This technical report describes our submissions to the Task1 (Sub-
task A, Acoustic Scene Classification with Multiple Devices) in
the DCASE-2020 challenge. First,we retrained the official base-
line as one of our single-systems for score fusion. It has two fully-
connected feed-forward neural network layers with OpenL.3 embed-
dings as its inputs. Then, we train a ResNet model that has been
proposed in [1] as our first submitted single-system. To improve the
model generalization ability, we design a device-enhancement data
augmentation method. This method together with the conventional
mix-up [2] are used to enhance the ResNet model.

Our second submitted single-system is a 9 layers convolutional
neural networks (CNN-9) with 2 x 2 average pooling, using the
perceptual weighted power spectrogram of each audio recording as
input. Our implementation is based on the CNN-9 code scripts '
provided by Qiugiang Kong, et.al [3]. For this system, only mix-up
is used for data augmentation.

Our third submitted single-system is a self-attention based
model (E-Transformer), in which two LSTM layers are used to
model the high-level representations from the Transformer en-
coder. More detail of these single-systems will be described in
next sections. Based on these four single-systems, our final four
submissions for the Task1-A are: (1) ResNet; (2) CNN-9; (3)
E-Transformer, (4) Softmax score fusion of the official baseline,

Uhttps://github.com/qiugiangkong/dcase2019_task1

ResNet and CNN-9. Experimental results on the foldl validation
set show that the system (1)-(4) achieve the classification accuracy
of 70.24%, 68.82%, 58.15%, 73.13% respectively.

2. DATA PREPARATION

Each audio recording is first down-sampled from the original 44.1
Khz to 22.05 Khz. Then we extract the acoustic features using a
Short-time Fourier Transform (STFT) with a window size of 2048-
sample and a hop-size of 512-sample. These STFTs are further
perceptually weighted using a 256-bin Mel filter bank to obtain the
final perceptual weighted power spectrograms.

2.1. Data Augmentation

We tried both the conventional mix-up [2] and specAugment [4]
methods to enhance the model robustness. Moreover, to handle
training and testing mismatch between multiple devices, we pro-
pose a simple device-enhancement data augmentation method (de-
viceAugment) to enhance the neural network model training. Figure
1 illustrates the simple framework of the proposed deviceAugment
method.
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Figure 1: Framework of the proposed deviceAugment method.

As shown in Figure 1, we take the device A recording as refer-
ence, and then add each recording from device B, C, and S1-S6
to the recording from device A at 5dB signal-to-noise ratio us-
ing Kaldi toolkit [5]. These deviceAugment recordings are then
combined with the official development training data to train each
single-system.

3. ARCHITECTURES

3.1. ResNet

Our ResNet model architecture is the same CNN architecture as the
RN2 described in Table 1 of work [1]. The optimal reception field
used in our model is 87 x 87 pixels over the extracted spectrograms.
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For the model optimization, we used Adam with a Adam(0.9,
0.99) scheduler. We start training with a learning rate of 1 x 10™*.
From epoch 100 until 150, the learning rate decays linearly from
1x107% to 1x 107>, The rest 200 epochs are with the learning rate
1 x 1075, No cross-validation is performed in our system training.

3.2. CNN-9

The basic architecture of our CNN-9 model is similar to the work in
[3]. However, we changed the model parameters as shown in Table
1. It has four convolution blocks (ConvBlock), each block contains
convolution layer, batch normalization layer and ReLu activation
layer. After the convolution layers, the AvgPooling was performed
on the Frequency dimension and the MaxPooling was performed on
the time dimension. Finally, we used a fully connected layer with
softmax function to get the prediction score of each acoustic class.

Table 1: Our CNN-9 architecure. BN: Batch Normalization. ReLu:
Rectified Linear Unit.

Name Description Output size
Input Channel x Time x Frequency 1 x 256 x 431
Cov3 x 3 -64BN-ReLu
ConvBlock1 Cov3 x 3 -64BN-ReLu 64 x 128 x 215
AvgPooling 2 x 2
Cov3 x 3 -128BN-ReLu
ConvBlock2 Cov3 x 3 -128BN-ReLu 128 x 64 x 107
AvgPooling 2 x 2
Cov3 x 3 -256BN-ReLu
ConvBlock3 Cov3 x 3 -256BN-ReLu 256 x 32 x 53
AvgPooling 2 x 2
Cov3 x 3 -512BN-ReLu
ConvBlock4 Cov3 x 3 -512BN-ReLu 512 x 32 x 53
AvgPooling 1 x 1
AvgPooling AvgPooling 32 x 1 512 x 53
MaxPooling MaxPooling 53 x 1 512
Linear(512,10)
FC Softmax 10

3.3. E-Transformer

Our E-Transformer model is based on the Transformer encoder with
multi-head self-attention mechanism. We perform the same down-
sampling as in [9] before the encoder, using two 3 x 3 CNN layers
with stride 2 to reduce the GPU memory occupation and and the
length of the input sequence. The detail architecture is shown in
Figure 2.

The experiments was conducted on ESPnet[6] end-to-end
speech processing toolkit. We extract 120-dimensional log Mel-
filter bank as acoustic features and normalize them with global
mean computed from the training set. The frame-length is 64 ms
with a 20 ms shift. In our experiment, model contains 8-layer en-
coder, where the dmodet = 256 and the dimensionality of position-
wise Feed-Forward Networks di = 512. In all attention sub-
layers,16 heads are used. The whole network is trained for 400
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Figure 2: Framework of the proposed E-Transformer system.

epochs and warmup|7] is used for the first 4,000 iterations. Also
the SpecAugment[8] is used for data augmentation.

4. RESULTS AND DISCUSSIONS
In this section, all the results are reported on the foldl validation

set, and the models are trained using the development training data
as the official baseline of DCASE 2020 Task1-A.

4.1. Results on Single-systems

Table 2: Classification accuracy (%) on the development set of our
single-systems.

System Data Augmentation Acc(%)
Baseline - 53.8
- 68.5
ResNet mix-up 69.5
mix-up + deviceAugment 70.2
mix-up + specAugment 68.9
- 67.3
CNN-9 mix-up 68.8
mix-up + deviceAugment 68.7
mix-up + specAugment 67.1
E-Transformer  specAugment 58.2

Table 2 shows the classification accuracy of each single-system.
We reproduced the official baseline system (with OpenL3 embed-
ding) and got a 53.8% accuracy on the fold1l development set. For
the ResNet and CNN-9 systems, we tried to perform the mix-up,
the deviceAugment and the specAugment for training data augmen-
tation. However, we find that the specAugment is not effective for
both of our ResNet and CNN-9 models. The deviceAugment can
slightly improve the ResNet. And we observed that the specAug-
ment is very important to improve the E-Transformer model. There-
fore, we choose the setup that achieved the best performance on the
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fold1 development to train our final single-systems for the challenge
submission.

4.2. System Fusion

For the system fusion, we simply fuse the single-systems at score
level using the Bosaris toolkit [10], details on the foldl develop-
ment set are shown in Table 3. We find that the combination of the
baseline, CNN-9 and ResNet achieves the best result.

Table 3: Classification accuracy (%) on the development set of score
fusion systems. The ‘Baseline’, ‘ResNet” and ‘CNN-9’ represent
the official baseline with OpenL.3 embedding, the RestNet with mix-
up and deviceAugment data augmentation, and the CNN-9 with mix-
up respectively.

System Acc(%)
Baseline+ResNet 71.0
Baseline+CNN-9 69.6

Baseline+CNN-9+ResNet  73.1

5. CONCLUSION

In this report, we detailed our approaches to tackle the DCASE2020
Task1-A challenge. We showed that our ResNet and CNN-9 mod-
els significantly outperformed the official baseline. Unfortunately,
the proposed attention and Transformer encoder dependent system
(E-Transformer) only achieved small improvement over the base-
line. The detail setups of each submission single-systems and the
behavior of system fusion at the score level are also described.
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