
Detection and Classification of Acoustic Scenes and Events 2020 Challenge

LOW-MEMORY CONVOLUTIONAL NEURAL NETWORKS FOR ACOUSTIC SCENE
CLASSIFICATION

Technical Report

Paulo Lopez-Meyer1, Juan A. del Hoyo Ontiveros1, Hong Lu2,
Hector Corcourier1, Georg Stemmer3, Lama Nachman2, Jonathan Huang4

1 Intel Corp, Intel Labs, Av. Del Bosque 1001, Zapopan, JAL, 45019, Mexico,
{paulo.lopez.meyer, juan.antonio.del.hoyo.ontiveros, hector.a.cordourier.maruri}@intel.com

2 Intel Corp, Intel Labs, 2200 Mission College Blvd., Santa Clara, CA 95054, USA,
{hong.lu, lama.nachman}@intel.com

3 Intel Corp, Intel Labs, Lilienthalstrasse 15, 85579, Neubiberg, Germany,
georg.stemmer@intel.com

4 Work done at Intel, jonathan.huang@ieee.org

ABSTRACT

In this work, we describe the implementation of four different con-
volutional neural networks for acoustic scene classification, com-
plying with the memory size restrictions defined in the DCASE2020
Task 1b challenge guidelines. Quantization, pruning, knowledge
distillation, and GCC-grams as input features, were explored as
means to achieve the highest accuracy possible while reducing the
number of resources in terms of the models trainable parameters and
memory. Our experimental results yield to higher than the 87.30%
reported accuracy in the challenge’s baseline, where our four sub-
missions managed to achieve > 90.00% of acoustic classification
accuracy using CNN models with < 500 KB .

Index Terms— Acoustic Scene Classification, Low-Memory,
Convolutional Neural Networks, End-to-End Audio Classifica-
tion, Model Quantization, Model Pruning, Knowledge Distillation,
GCC-grams.

1. INTRODUCTION

For the 2020 Detection and Classification of Acoustic Scenes and
Events challenge (DCASE2020), acoustic data were provided to
solve different acoustic related tasks. Task 1 refers to the challenge
of building a model to classify different recordings into predefined
classes corresponding to different urban environment scenes.

This challenge’s dataset consists of 10-second audio record-
ings obtained in 10 different acoustic scenes from 12 major Euro-
pean cities, grouped in three major classes: indoor scenes, outdoor
scenes, and transportation related scenes [1]. This acoustic dataset
comprises binaural audio signals at 48 kHz of sampling rate in 24
bit resolution.

The challenge suggests the usage of a 1-fold arrangement for
development as part of this task, i.e. 9,185 audio samples for train-
ing, and 4,185 for evaluation. Through the development stage of our
implementations, we used Google Audioset data [2] to construct ef-
ficient audio embedding generators customized for three of our four
implemented classification models.

2. METHODOLOGY

Following the guidelines provided by the challenge in the Task1
subtask b (Task 1b), we experimented with four low-memory im-
plementations of convolutional neural network architectures (CNN)
based on different techniques: FP32 to INT8 quantization, prun-
ing of models using the lottery ticket approach, knowledge distilla-
tion from a large CNN to a smaller one, and the use of generalized
cross-correlation with phase transformation (GCC-grams) as input
features to a CNN. Two different CNN architectures were used as
part of the four implementations above; the INT8 quantization and
the pruning approaches are based on our end-to-end (e2e) AclNet
that takes raw audio data as the input into two 1D convolutional
layers followed by a 2D multi-layer CNN; the knowledge distilla-
tion and the GCC-gram approaches were implemented using typical
CNNs. Pythorch was the framework of choice for our experimental
setups.

In the following subsections, we describe in detail the exper-
imentation followed around the four low-memory implementation
mentioned above, as part of our submissions to the DCASE2020
Task 1b challenge.

2.1. INT8 quantization

AclNet is an e2e CNN architecture that takes raw time-domain in-
put waveform, as opposed to more commonly used spectral fea-
tures, e.g. Log-Mel filterbank or Mel-frequency cepstral coeffi-
cients (MFCC). One of the advantages of these types of e2e ar-
chitectures is that the front-end feature makes no assumptions of
the frequency response; its feature representation is learned in a
data-driven manner, thus are optimized for the task at hand provided
there are sufficient training data.

For this implementation, we conditioned the settings corre-
sponding to the work described in [3], with a width multiplier of
0.5, and conventional depth-wise convolution layers. This architec-
ture was pre-trained with Audioset [2] to generate a vector of 512
audio embeddings that are sent to a fully-connected layer classifier
with ReLU activation functions in a transfer learning manner. Raw
audio data downsampled at 16 kHz from the Task 1b dataset was



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

Figure 1: Development of our proposed implementations of four low-memory CNN architectures for acoustic scene classification in the
DCASE2020 Task 1b challenge.

downsampled to 16 kHz and fed to the pre-trained AclNet, where
the generated embeddings were used to train the classifier.

We performed a search for the optimal parameters of this e2e
acoustic classification CNN model. We experimented with different
values and configurations, that yield to the best performing mod-
els. Additionally, in order to increase the robustness of the training
process, we also used different audio data augmentation techniques
commonly used in audio processing, such as random noise addition,
random cropping of 1-second of the audio signal, and random gain
variation, together with the widely used mixup data augmentation
technique [4]. During the training, acoustic data were randomly se-
lected to form mini-batches of training clips. At evaluation time,
we run the inference on 1-second non-overlapping consecutive au-
dio segments, and then averaged the outputs over the length of the
evaluation audio.

The resulting AclNet0.5 constitutes an FP32 base model with
317,038 trainable parameters, which yields into 1,238.43 KB of
memory size, clearly above the 500 KB restriction in the challenge.
In order to decrease the memory size of this model, we applied a
straight FP32-to-INT8 quantization based on the methodology de-
scribed in [5], through the use of the available tool accessible in [6],
that results in a 309.60 KB CNN model.

2.2. Pruning based on the lottery ticket hypothesis

In this low-memory implementation, we went through the same
training of an FP32 AclNet0.5 base model, exactly as described
in the INT8 quantization described above, i.e. same handling of
the data and training strategy . This AclNet0.5 base model, with
317,038 parameters is pruned at 19.6% in order to have a final
model of 255,740 parameters that can be quantized from FP32-to-
FP16 for a final 499.49 KB of memory size CNN model. The FP16
quantization used in all of our experiments were executed using the
available functions from Pytorch.

As mentioned before, we pruned our AclNet0.5 base model
through the lottery ticket hypothesis [7]. We initially trained our
model to generate our base AclNet; after training, we removed

19.6% of the parameters by a typical pruning scheme, i.e. remove
the parameters that are contributing less to the model’s classifica-
tion behavior. The lottery ticket hypothesis comes into place when,
after identifying the post-pruning weights, a new training process is
carried out with the original randomly initialized weights values as-
signed at the initial pre-training stage. This constitutes the spirit of
the lottery ticket proposal, where subnetworks can be found in post-
training pruning, that could reach evaluation accuracy comparable
to the original network.

2.3. Knowledge distillation

We explored the use of knowledge distillation [8][9] from a large
pre-trained Teacher CNN, into a significantly smaller Student CNN.
For the development of both Teacher the Student, spectral based
features were used; the acoustic data were processed to generate
Log-Mel filterbank representations with 64 filter bands over a time
window of 25 milliseconds and overlaps of 10 milliseconds, result-
ing in one Log-Mel filterbank channel as the input to the CNNs.
Spec augment [10] was used a data augmentation process during
training.

The Teacher CNN consists of a Vgg12 [11] with the exact same
architecture as the one used in our submission for Task 1a; it has a
total of 12 convolutional layers, with the first one having an output
of 64 channels, and the last one is defined by 512 used to generate
embeddings (pre-trained with Audioset [2]) that are needed during
the knowledge distillation process. At the output of each convolu-
tional layer, we apply batch normalization followed by ReLU acti-
vation. The output of the last convolutional layer is average pooled,
to always produce a vector length of 512 values. This vector is then
followed up by a fully connected layer to produce the 3-class out-
put defined by the challenge’s Task 1b. The Vgg12 CNN comprises
12.6 M trainable parameters, and 49 MB of memory.

The Student model is a small 3-layers CNN. Each convolutional
layer is followed by batch normalization, ReLU activation func-
tions, and max pooling. The output consists of a fully connected
linear layer to perform the classification of the 3 acoustic scenes de-



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

fined in this task. The resulting Student model has 252,713 trainable
parameters in 978.16 KB of memory with FP32 format.

Knowledge distillation between the Teacher and the Student
CNNs is executed in training time by means of the following gen-
eral loss function defined by:

loss = α(Eloss) ∗ β(Sloss) ∗ γ(Closs) (1)

whereEloss represent the KL divergence loss between the 512 em-
beddings of the last convolutional layers of the Teacher and Student;
Sloss is the KL divergence loss between the soft scores (softmax)
at the output of both networks; and Closs is the cross-entropy loss
between the predicted and target labels. A search for the optimal α,
β, and γ resulted in values of 0.25, 0.25, and 0.50 respectively. A
final FP32 to FP16 quantization is performed to the Student model,
resulting in a CNN model of size 493.58 KB.

2.4. Use of GCC-grams

Since the data provided for Task 1b are presented in a binaural man-
ner, we propose the use of an additional feature based on the vector
of the generalized cross-correlation with phase transform algorithm
(GCC-PHAT), described in [12]. Such vector presents a delta-like
response in which the maximum value has an offset from the cen-
ter numerically equal to the amount of delay samples between the
two signals, and it is normally used for sound source location. We
segment the middle part of the vector, to generate time matrices we
call GCC-grams (as an analogous name to spectrograms), which are
synchronized with Log-Mel filterbank representations. The Log-
Mel filterbanks were generated for both binaural channels down-
sampled to 16 kHz, with 40 filter bands over a time window of
64 milliseconds and overlaps of 45 milliseconds, resulting in one
Log-Mel filterbank spectrogram matrrix per audio channel. When
assembling all these representations together, the features consti-
tute a 3 x 40 x 500 (channels x frequency x time) for each 10-
sec audio clip, that are used for training and evaluation of a small
depth-wise CNN. Our hypothesis is that GCC-grams, and therefore
sound directivity information, can improve sound classification per-
formance.

The 3-channel input CNN used in this implementation consists
of a small 5 depth-wise convolutional layers with added batch nor-
malization, ReLu activation functions, and maxpooling. At the out-
put of the last convolutional layer, a linear fully connected layer is
used to act as the 3-class classifier. The total number of trainable
parameters for this CNN base model is 252,491, which results in
a memory size of 986.29 KB in FP32 format. By applying an ad-
ditional FP16 quantization, the resulting model presents a memory
size of 493.15 KB.

3. RESULTS AND DISCUSSION

The experimental results obtained by our implementations are pre-
sented in the Tables 1, 2 and 3. Table 1 shows the performance of the
base models over the Task 1b evaluation dataset, i.e. these models
were trained in FP32 format to maximize results in the evaluation
set. AclNet0.5 constitutes the base model for the INT8 quantization
(AclNet0.5 INT8) and the lottery ticket prunning (AclNet0.5 LT)
approaches; the Teacher CNN is used after training for knowledge
distillation, and the GCC-grams CNN was initially designed to have
less than 256,000 parameters for an efficient FP16 quantization. It
is not surprising to see a significantly higher accuracy performance

Table 1: Experimental evaluation results obtained from the CNN
base models

Model Accuracy Parameters Memory KB

Baseline 87.30% – 450.00
AclNet0.5 91.52% 317,038 1,238.43
Teacher CNN 94.60% 12,621,635 49,303.26
GCC-grams CNN 91.23% 252,491 986.29

Table 2: Experimental evaluation results obtained after the differ-
ent low-memory implementations were executed on the CNN base
models

Model Accuracy Parameters Memory KB

AclNet0.5 INT8 90.94% 317,038 309.60
AclNet0.5 LT 91.47% 255,740 499.49
Student CNN 90.35% 252,712 493.58
GCC-grams CNN 91.23% 252,491 493.15

of the Teacher CNN as compared to the other base models, due to
the high number of parameters.

In Table 2, the experimental results obtained over the evalua-
tion dataset are displayed with the low-memory implementations of
our work, that constitute the four allowed submissions to the Task
1b challenge. It can be observed how all these optimized models
achieve a higher performance than the baseline reported in the Task
1b guidelines, with at least 90.35% of acoustic scene classification,
and with less than 500 KB, complying with the the challenge’s sub-
mission restrictions.

Additional context metrics for comparison between the base
models and the low-memory implementations are presented in Ta-
ble 3. These results present some interesting insights. The GCC-
grams CNN resulted in a good accuracy performance; this is sur-
prising, since this model is at disadvantage as compared to the other
base modes, by being trained from weights randomly initialized,
i.e. no transfer learning used. Knowledge distillation resulted in
the most significant memory size reduction, but also its accuracy
performance gets impacted the most, were the lowest performance
was obtained. The best accuracy was presented by the AclNet0.5
pruned and quantized to FP16; also, straight INT8 quantization over
the AclNet0.5 base model seems to be an efficient approach, where
the accuracy drop observed was less than 1.00%.

4. CONCLUSIONS

In this work, we present four different low-memory implementa-
tions of CNNs trained for acoustic scene classification as defined in

Table 3: Compression metrics used to compare the CNN base mod-
els with the low-memory implementations

Model Reduction Acc drop Format

AclNet0.5 INT8 4.0X 0.58% INT8
AclNet0.5 LT 2.5X 0.05% FP16
Student CNN 99.9X 4.25% FP16
CGG-grams CNN 2.0X 0.00% FP16



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

the DCASE2020 Task 1b challenge. By exploring different method-
ologies to execute neural networks model optimization, e.g. trans-
fer learning, knowledge distillation, pruning, and quantization, we
were able to successfully construct CNN models that achieve >
90% accuracy performance with less than 500 KB of memory size.

5. REFERENCES

[1] T. Heittola, A. Mesaros, and T. Virtanen, “TAU Urban
Acoustic Scenes 2020 3Class, Evaluation dataset,” Feb. 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.3685835

[2] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
set: An ontology and human-labeled dataset for audio events,”
in Proc. IEEE ICASSP 2017, New Orleans, LA, 2017.

[3] J. J. Huang and J. J. A. Leanos, “Aclnet: efficient end-to-end
audio classification CNN,” CoRR, vol. abs/1811.06669, 2018.
[Online]. Available: http://arxiv.org/abs/1811.06669

[4] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” CoRR,
vol. abs/1710.09412, 2017. [Online]. Available: http:
//arxiv.org/abs/1710.09412

[5] A. D. Kozlov, I. A. Lazarevich, V. Shamporov, N. Lya-
lyushkin, and Y. Gorbachev, “Neural network compres-
sion framework for fast model inference,” ArXiv, vol.
abs/2002.08679, 2020.

[6] “Neural network compression framework for py-
torch (nncf),” 2020. [Online]. Available: https://https:
//github.com/openvinotoolkit/nncf pytorch

[7] J. Frankle and M. Carbin, “The lottery ticket hy-
pothesis: Training pruned neural networks,” CoRR,
vol. abs/1803.03635, 2018. [Online]. Available: http:
//arxiv.org/abs/1803.03635

[8] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
knowledge in a neural network,” in NIPS Deep Learning
and Representation Learning Workshop, 2015. [Online].
Available: http://arxiv.org/abs/1503.02531

[9] M. Phuong and C. Lampert, “Towards understanding knowl-
edge distillation,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhut-
dinov, Eds., vol. 97. Long Beach, California, USA:
PMLR, 09–15 Jun 2019, pp. 5142–5151. [Online]. Available:
http://proceedings.mlr.press/v97/phuong19a.html

[10] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-
tation method for automatic speech recognition,” in INTER-
SPEECH, 2019.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in International
Conference on Learning Representations, 2015.

[12] C. Knapp and G. Carter, “The generalized correlation method
for estimation of time delay,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 24, no. 4, pp. 320–327,
1976.


