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ABSTRACT

Sound Event Localization and Detection (SELD) is a problem re-
lated to the field of machine listening whose objective is to rec-
ognize individual sound events, detect their temporal activity, and
estimate their spatial location. Thanks to the emergence of more
hard-labeled audio datasets, Deep Learning techniques have be-
come state-of-the-art solutions. The most common ones are those
that implement a convolutional recurrent network (CRNN) having
previously transformed the audio signal into multichannel 2D rep-
resentation. In the context of this problem, the input to the network,
usually, has many more channels than in other problems related to
machine listening. This is because the audio is recorded by an ar-
ray of microphones.Some frequency representation is obtained for
each of them together with some additional representations, such
as the generalized cross-correlation (GCC), whose objective is the
assessment of the relationship between channels. This work aims
to improve the accuracy results of the baseline CRNN by adding
residual squeeze-excitation (SE) blocks in the convolutional part of
the CRNN. The followed procedure involves a grid search of the
parameter ratio of the residual SE block, whereas the hyperparame-
ters of the network remain the same as in the baseline. Experiments
show that by simply introducing the residual SE blocks, the results
obtained in the development phase clearly exceed the baseline.

Index Terms— SELD, Deep Learning, Convolutional Re-
current Neural Network, Squeeze-Excitation, Residual learning,
DCASE2020

1. INTRODUCTION

Sound Event Localization and Detection (SELD) tries to solve both
problems, related to machine listening, of tracking the activation
of different classes (detection) and the spatial localization of sound
events at the same time [1, 2, 3, 4]. For an intelligent system to be
able to calculate such outputs, the audio must have been recorded
by an array of microphones (multichannel audio input).

SELD first appeared in DCASE 2019 edition as an evolution of
the Sound Event Detection (SED) problem. SED was presented in
the first edition of the DCASE in 2013 [5] and was presented again
as a task in the 2016 [6] and 2017 [7] editions. The objective of
this task is the individual detection of particular events that occur
in a scene. The nature of this problem is directly confronted with
the polyphonic nature of audio [8, 9], i.e. the overlapping of several
events in the same time period. SELD task DCASE2020 edition can
be seen as a modification from 2019 DCASE challenge. Modifica-
tions done in this edition have been the presented dataset, that has

been increased, and the detection metrics that are computed with a
20o threshold from the reference for true positives.

Regarding the dataset called TAU-NIGENS Spatial Sound
Events 2020 [10], it should be observed that each scene has been
recorded in two different formats: using an array of 4 microphones
(MIC) and with first-order Ambisonics (FOA). In both recording
formats (MIC or FOA), each sound event in the scene is associated
with a direction-of-arrival (DoA) to the recording point, and tempo-
ral onset and offset times. The number of classes to be detected are
14. Some of these classes are: piano, male speech, female speech,
barking dong, among others. As it can be noticed, sounds belong-
ing to these classes are easily found in domestic environments. This
encourages the proposal of solutions that could improve real-world
applications such as home assistants [11].

For this submission, MIC recording format has been used. In
the MIC setup, the microphones have been placed on an spherical
acoustically-hard baffle, and their positions described in spherical
coordinates, φ, θ and r are as follows:

• M1: (45o, 35o, 4.2cm)

• M2: (-45o, -35o, 4.2cm)

• M3: (135o, -35o, 4.2cm)

• M4: (-135o, 35o, 4.2cm)

Some of the modifications of the dataset presented in this edi-
tion with respect to the previous one are the following:

• (2x) Large lecture halls with inclined floor. Ventilation noise.

• (2x) Modern classrooms with multiple seating tables and car-
pet flooring. Ventilation noise.

• (2x) Meeting rooms with hard floor and partially glass walls.
Ventilation noise.

• (2x) Old-style large classrooms with hard floor and rows of
desks. Ventilation noise.

• Large open space in underground bomb shelter, with plastic
floor and rock walls. Ventilation noise.

• Large open gym space. People using weights and gym equip-
ment.

The dataset is divided into several folders under development.
4 folders (3-6) are used for training, folder 2 for validation and 1 for
testing.

Regarding the difference in the metrics used in this edition, it
is intended to have a more representative calculation of the problem
by doing a joint evaluation of location and detection [12]. A pre-
diction will be considered correct if both are of the same class and



Detection and Classification of Acoustic Scenes and Events 2020 Challenge

Feauture extractor 
MIC: 64-band [melenergies (4 channels) + GCC-PHAT (6 channels)

128, GRU, tanh, bi-directoonal
128, GRU, tanh, bi-directoonal

128, fully connected, linear

14, fully connected, sigmoid

SED DOA

Input multichannel audio

Conv-StandardPOST (#64, r)
5  4 maxpool

Conv-StandardPOST (#64, r)
1  4 maxpool

Conv-StandardPOST (#64, r)
1  2 maxpool

+

+

+

MIC: 10  T  64+ +

64  T/5  2+ +

T/5  128+

T/5  128+

128, fully connected, linear

3*14, fully connected, tanh

T/5  128+

T/5  14+ T/5  3*14+

Figure 1: SELD framework proposed in this work. The most highlighted block corresponds to the change made in this task. The lighter
blocks have the same configuration as in the baseline. ρ indicates the ratio parameter.

the distance between them is below 20o. The detection metrics are
now location-dependent. Regarding detection, the metrics use the
error rate (ER20o ) and the F-Score (F20o ). On the other hand, in part
of localization, the metrics used are the localization error (LECD),
expressing average angular distance between predictions and refer-
ences of the same class and the localization recall metric (LRCD),
expressing the true positive rate of how many of these location pre-
dictions were detected in a class, of the total occurrences of the
class.

This paper aims to study the improvements that squeeze-
excitation techniques can bring to the SED/DOA task. To this
purpose, the convolutional part of the CRNN proposed as a base-
line is modified. The convolutional layers are replaced by residual
squeeze-excitation blocks. As it is the first time that these blocks
are introduced in this problem, a grid-search of the hyperparame-
ter ratio is performed. The results show that only by making this
modification the results of the baseline are considerably exceeded.

This paper is organized as follows: Section 2 introduces the
network presented as the baseline and the modification done in this

submission to it. Section 3 shows the results obtained by the frame-
work implemented and Section 4 concludes our work.

2. METHOD

2.1. Baseline System

The baseline network is known as SELDnet [13]. This network is a
CRNN that uses detections (SED) to estimate the DOA of each of
the classes. The SED is displayed as a multi-label classification and
the DOA as a multi-output regression.

The network input is a representation of 10 channels (MIC for-
mat) of dimension T × F , where T corresponds to the number of
temporary bins and F to the number of frequency bins. In this
case, F is set to 64 and T corresponds to 300 temporal bins. 4 of
the channels correspond to the log-Mel Spectrograms of each sig-
nal recorded by each microphone of the array and the remaining 6
correspond to the calculation of the generalized cross-correlation
(GCC) [2]. The implementation of the baseline network can be
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found in this link1.

2.2. Squeeze-Excitation Residual blocks and modifications to
the baseline network

Most Machine Listening frameworks rely on the ability of the CNN
to extract meaningful features. Either in a VGG-style [14] or Resid-
ual [15] networks are very similar between different submissions
or proposed solutions. Therefore, the improvement of the systems
often falls on other aspects such as data augmentation techniques
(pitch shifting [16], speed perturbation [3] or mixup [17] among
others) or the ensemble of many independent models [3, 18, 19, 20].

In [21] an analysis of different Residual Squeeze-Excitation
blocks proposed in [22] plus the contribution of two novel blocks
using the Concurrent Spatial and Channel Squeeze and Channel
Excitation configuration presented in [23] is carried out in Acoustic
Scene Classification task. The analysis is run without any data aug-
mentation technique during training. In [21], a novel configuration
labelled as Conv-StandardPOST showed the best results in treated
ASC problem. Therefore, following the conclusions of [21], in the
present work the convolutional layers of SELDnet are replaced by
the Conv-StandardPOST blocks. The number of filters remain the
same, 64. The framework proposed in this work is shown in Fig-
ure 1.

In order to widen the study of the contribution of the squeeze-
excitation technique, the network was also trained with another
residual configuration. The block labelled as Conv-Residual in [21]
was also used in the present work. It is a residual block with
certain particularities, but with no squeeze-excitation techniques.
Both, Conv-StandardPOST and Conv-Residual configurations, can
be seen in Figure 2. For further insight about this choice, see [21].
The code for this submission can be found in the following link2

2.3. Experimental details

The training process is the same as that proposed in the baseline. No
hyperparameter, such as learning rate, the decay weight, number of
epochs, etc., was modified; in this way, the variations in the results
can only be attributed to the proposed modifications explained in
section 2.2.

3. RESULTS

In order to study the squeeze-excitation residual blocks contribu-
tion, it was decided to carry out a grid search of different possible
ratios. Keep in mind that the network is made up of 3 blocks of
64 filters. The ratio (ρ) is the same for all blocks as it can be seen
in Figure 1. The results can be seen in Tables 1 and 2. It has also
been decided to add a configuration that although it is residual does
not incorporate the squeeze-excitation block in order to be able to
independently analyze the contribution of residual learning and this
same learning plus squeeze-excitation. The chosen block has been
the Conv-Residual presented in [21]. The results are presented us-
ing the following structure: the system named baseline is the one
presented as starting point by the organization, Conv-Residual cor-
responds to the residual block shown in Figure 2(a). Experiments
indicated by ρ correspond to Conv-StandardPOST implementation
with that particular ratio, see Figure 2(b).

1https://github.com/sharathadavanne/seld-dcase2020
2https://github.com/Joferesp/DCASE2020-Task3
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Figure 2: Residual blocks analyzed in this paper. Layers are in-
dicated as Batch Normalization (BN), squeeze-extication module
(scSE) and convolutional layers are indicated with the kernel size.

framework ER F (%) LE (o) LR (%)
baseline 0.56 59.2 22.6 66.8

Conv-Residual 0.50 65.2 19.0 68.5

ρ = 1 0.51 63.7 20.5 69.1

ρ = 2 0.52 62.2 19.4 68.1

ρ = 4 0.49 65.1 20.2 68.1

ρ = 8 0.51 64.0 19.4 67.4

ρ = 16 0.52 63.0 18.6 68.0

Table 1: Development results using DCASE2019 metrics
(‘dev’).

framework ER20o F20o (%) LECD (o) LRCD (%)
baseline 0.78 31.4 27.3 59.0

Conv-Residual 0.68 42.3 22.5 65.1

ρ = 1 0.70 39.2 23.5 63.6

ρ = 2 0.69 40.4 23.2 62.1

ρ = 4 0.68 40.9 23.3 65.0

ρ = 8 0.69 40.8 23.5 63.8

ρ = 16 0.69 40.7 23.3 62.8

Table 2: Development results using DCASE2020 metrics
(‘dev’).
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As can be seen in Table 1, all the configurations exceed the met-
rics presented as baseline. Residual learning allows obtaining more
accurate systems by adding only a shortcut, in our case convolu-
tional (see Conv-Residual results). In turn, the concerned squeeze-
excitation improves the results of residual learning without this pro-
cess (Conv-Residual) in all metrics except F20o . However, there is
no one ratio that exceeds the others, depending on the metric, a dif-
ferent ratio shows better performance.

The improvement provided by squeeze-excitation operations
can be seen more clearly using the DCASE2019 metrics. This
year’s restrictions do not allow the improvement to be so marked
(see Table 2). Although implementations with Conv-StandardPOST
improve the proposed baseline, the architecture with Conv-Residual
obtains the most accurate metrics. To continue with the study, the
same tables are presented but in evaluation step, where 5 folders are
used for training (2-6), 1 for validation (1) and 2 for testing (7-8).
In this case the metrics are shown on the validation folder since the
ground-truth of the test folders is not available.

framework ER F (%) LE (o) LR (%)
Conv-Residual 0.49 65.6 18.0 69.0

ρ = 1 0.47 68.0 17.6 71.1

ρ = 2 0.48 65.7 18.3 71.7

ρ = 4 0.48 66.2 19.1 71.6

ρ = 8 0.48 66.7 18.5 70.1

ρ = 16 0.48 66.9 17.8 71.7

Table 3: Evaluation results using DCASE2019 metrics (‘eval’).

framework ER20o F20o (%) LECD (o) LRCD (%)
Conv-Residual * 0.64 45.8 20.7 65.4

ρ = 1 * 0.63 47.0 21.3 67.9

ρ = 2 0.65 44.9 21.0 65.5

ρ = 4 0.66 43.5 22.1 66.1

ρ = 8 * 0.64 46.0 21.7 66.6

ρ = 16 * 0.63 46.4 21.1 66.8

Table 4: Evaluation results using DCASE2020 metrics (‘eval’).
Implementations marked with * are those that have been submitted
for the challenge.

As it can be appreciated in Tables 3 and 4, in evaluation step,
worse results are obtained with the Conv-Residual block than in the
development step. In fact, it is not the block that shows the best
performance. This can lead us to two conclusions: the first is that
squeeze-excitation techniques do contribute to more accurate train-
ing in SED/DOA task. The second is that these techniques require
more data to achieve relationships that can be better generalized in
the test step. With this data partition it can be argued that the imple-
mentation of Conv-StandardPOST block with ρ = 1 shows the best
trade-off between SED and DOA tasks. Below is a Table with the
name of the submission related to the implemented block to make
it more understandable when analyzing the final results of the chal-
lenge.

Block used Submission name
Conv-Residual Naranjo-Alcazar Vfy task3 1

ρ = 1 Naranjo-Alcazar Vfy task3 2

ρ = 8 Naranjo-Alcazar Vfy task3 3

ρ = 16 Naranjo-Alcazar Vfy task3 4

Table 5: Relationship between the name of the submission and the
implementation explained in this paper.

4. CONCLUSION

The aim of this paper is to analyze the improvements that residual
learning and squeeze excitation techniques can bring in the field of
SED and DOA. To this end, it has been decided to make as few
modifications as possible to the framework presented as a baseline.
By modifying only the convolutional part of it and without any extra
technique during the learning (data augmentation) or during the in-
ference phase (ensemble of several models) results that exceed the
baseline to a greater extent have been achieved. However, the re-
sults show that this field is subject to further improvements and new
solutions to enhance squeeze-excitation techniques in the SED and
DOA fields.
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