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ABSTRACT

Audio scene classification (ASC) is an emerging filed of research in
different scientific communities such as urban soundscape charac-
terization or bioacoustics. It has gained visibility and relevance with
open challenges especially with the benchmark dataset and evalua-
tion from DCASE. This paper present our deep learning model to
address the ASC task of the DCASE 2020 challenge edition. The
model exploits multiple long-term and fine-scale audio representa-
tions as inputs of the neural network. Each representation is fed into
a different network. The audio embedding of each branch are fused
before a Multi-Layer Perceptron to predict the final classes.

Index Terms— ASC, tasklb, RMS level, third octave levels,
sonic atmosphere features, ensemble method

1. INTRODUCTION

Sound plays a key role in our perception of urban environments.
Acoustic scenes classification (ASC) can be essential when visual
information is not or partially available. ASC aims at classifying
acoustic scenes into predefined classes. For the DCASE 2020 chal-
lenge edition, 2 subtasks were proposed to the participants. This
report focuses on subtask B which is a classification of 3 acous-
tic scenes acquired in 12 European cities with the same recording
device.

In the DCASE 2020 challenge task 1b, a new taxonomy is in-
troduced. The goal of the challenge is to classify acoustic scenes
into three classes: indoor, outdoor and transportation. Moreover, it
is required that the neural network size should not exceed 500 KB.

A special focus is put on the audio embedding to meet the
model size requirements of the task 1b. By reviewing last DCASE
challenge edition, most used audio representations in ASC are
spectrogram-like ones and sometimes raw audio waveform. The
three classes of the task allow more flexibility on the choice of
audio representation. In this report, we use long-term representa-
tions combined with sonic atmosphere features and log-mel spec-
trograms. The following section will cover a detailed explanation

*PhD is granted by the the French Defence Procurement Agency (Direc-
tion Générale des Armements).

of the feature extraction process, system architecture, results, and
conclusion.

2. FEATURE EXTRACTION

The AARAE Matlab toolbox was used [1] to compute the interau-
ral cross correlation coefficient of the filtered spectrum and the Leq
sound level defined in [1] were using the stereo recordings. Fur-
thermore, audio segments were converted to mono using the librosa
Python package [2]. Eight timbral characteristics (hardness, depth,
brightness, roughness, warmth, sharpness, boominess, reverb [3])
were computed for each second and then averaged over the whole
audio recording. All these features enabled to describe the sonic at-
mosphere of the acoustic scene with only a few number of features.
They are named sonic atmosphere features in the following. Log-
mel spectrograms were also extracted with 64 bands. The analysis
frame was set to about 85 ms (50% hop size). This enabled to have
a low temporal resolution representation of the audio signals. This
will help to describe the soundscape at finer temporal and frequency
scales than other computed features.

Finally, two long-term representations were used. The Power
Spectral Density (PSD) was determined by the Welch method [4]
with 1024-point Hamming window, 50% overlap, based on 1s tem-
poral signal segments. As a consequence, the time resolution is 1s
and frequency resolution is 46.8 Hz. The root-mean square (RMS)
level was then computed. This feature will help to have an overview
of the dominant frequencies in the acoustic scene. Furthermore,
third octave band levels (TOL) were also evaluated on each second
of the 10s-long audio clips. Other 1/n octave bands were tried but
1/3 ones give better results in our experiments. The workflow used
to compute RMS level and TOL follows that of [5].

Even if most of the proposed features are extracted from the
audio spectrum and the information contained in such representa-
tions may be redundant, the objective is to help the model in order
to reduce its complexity.

Four different inputs are fed into neural networks. There are
matrices of size 10x34 and 512x1 for the TOL and RMS level
inputs respectively, and an array of length 10 (for the sonic atmo-
sphere features) are fed into a dense neural network. The log-mel
spectrograms are stored in a 64 X265 matrix.
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In order to increase the number of training samples and to make
the model more robust to new data, mixup data augmentation tech-
nique is used [6].

3. SYSTEM ARCHITECTURE

Three different models (cf Fig. 1) are trained. Their predictions
are averaged to make the final decision (cf Fig. 1D). The averaging
ensemble method aims at combining different models to improve
predictive performance from any individual model. The variety of
features fed into the different models and the different model ar-
chitectures can improve the ability of the ensemble to generalize to
unseen data.

3.1. Model 1 (M1)

Log-mel spectrograms, TOL and sonic atmosphere features are fed
into a three branches neural network (cf Fig. 1). Both log-mel spec-
trograms and TOL are inputs of a 2D convolutional layers. The
embedding of the latter is flattened at the end while a global av-
erage pooling is performed on the TOL embedding. The sonic at-
mosphere features are fed in a multi-layer perceptron (MLP) with
only two dense layers. The log-mel spectrogram branch of the neu-
ral network is inspired by the baseline with a reduction of the input
size of the melspectrograms. TOL branch and the sonic atmosphere
embedding aim at helping the model to capture acoustic scene time
and frequency variations based on several seconds. This model has
47,911 non-zero parameters.

3.2. Model 2 (M2)

The RMS level, TOL and the sonic atmosphere features are the
inputs of this three branch model. 1D convolutional layers with
different dilatation rates are applied to the RMS level. This en-
ables the network to learn relations between other frequencies than
TOL at a low computational cost. The TOL is modified with three
Gated Recurrent Units (GRU) to learn different temporal relations
on the audio spectrum. These layers are equivalent to Long-Short
Term Memory cells but with less computational complexity. In this
model, the total number of non-zero parameters is 29,117.

3.3. Model 3 (M3)

Only log-mel spectrograms and TOL are fed into a fully convolu-
tional and a recurrent network respectively. Both models are charac-
terized by a low complexity. However, in the final ensemble model,
it weights about a third of the total number of non-zero parameters.
It contains 45,465 non-zero parameters.

3.4. Training parameters shared by all models

All experiments were completed with Keras [7] with a Tensorflow
backend [8] on a Google Colab GPU environment [9]. All models
were trained for 200 epochs in batches of 32 samples. A reduction
of the learning rate for each model is set up if the validation loss did
not decrease since 3 epochs. An early stopping was used to stop the
training and to avoid overfitting.

Challenge

Class label Baseline Best ensemble  Best ensemble
M1+M2+M3) (M1+M2)

indoor 82.0 86.4 86.2

outdoor 88.5 96.1 95.9

transportation | 91.3 94.7 94.7

Average Acc. | 87.3 924 92.3

Model size 450 KB  478.5KB 300.9 KB

Table 1: Results on the development dataset for our two systems
compared to baseline. Characters in bold are the best accuracy
(acc.) for each row or the smaller model size.

4. RESULTS

4.1. Dataset

The dataset for task 1b is the TAU Urban Acoustic Scenes 2020
3Class. This subtask addresses acoustic scene classification prob-
lem. An audio recording is classified into three different: indoor,
outdoor and transportation. These classes represent the place where
the recording took place. The dataset consists of 10-seconds stereo
audio clips (sampling rate of 48 kHz) from 10 acoustic scenes. In
total, 40 hours of audio recording was available as the development
dataset.

4.2. Results

For both proposed systems, the baseline is outperformed (cf Ta-
ble 4.2). The contribution of M3 is limited. Adding this model to
the ensemble only improves by 0.1 % the macro-average accuracy
while its number of non-zero parameters is about more than 1.5
times higher than M3 ones.

The reason of why some acoustic scene are misclassified was
investigated. For example, the misclassification of indoor scenes
occurs when the acoustic scene is either really quiet or when there
is a specific noise such as the clatter of metro doors.

5. CONCLUSION

In this paper, 2 ensemble models are tried to improve the accuracy
of the acoustic scene classification. Long-term but also fine-scale
audio representations were combined as inputs to the neural net-
works. Averaging was considered for the ensemble. The results
showed an increase in the classification accuracy as compared to
the baseline for both proposed low complexity systems.
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Figure 1: Model graphs. A) Model 1 (M1), B) Model 2 (M2), C) Model 3 (M3) and D) Average ensemble
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