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ABSTRACT

A system for the automatic classification of acoustic scenes is pro-
posed that uses one audio channel for calculating the spectral dis-
tribution of energy across auditory-relevant frequency bands, and
some descriptors of the envelope modulation spectrum (EMS) ob-
tained by means of the discrete cosine transform. When the stereo-
phonic signal captured by a binaural microphone is available, this
parameter set is augmented by including the first coefficients of
the cepstrum of the cross-correlation between both audio channels.
This cross-correlation contains information on the angular distribu-
tion of acoustic sources. These three types of features (energy spec-
trum, EMS and cepstrum of cross-correlation) are used as inputs
for a multilayer perceptron with two hidden layers and a number of
adjustable parameters below 15,000.

Index Terms— Acoustic scene classification, modulation spec-
trum, cepstrum, Multilayer Perceptrons

1. INTRODUCTION

This submission consists of a system for the classification of acous-
tic scenes based on a combination of features obtained from the
envelope modulation spectrum (EMS) [1] calculated using a gam-
matone filter-bank [2], and from the cepstrum claculated from the
cross-correlation function of the left and right channels, in case
these are available. The EMS is calculated from both audio chan-
nels. These features are used as inputs for a standard Multilayer
Perceptron (MLP) with only two hidden layers [3].

2. MATERIALS

Audio recordings correspond to the datasets specified for DCASE
202 tasks 1A and 1B [4]. For the 1A task, audios are taken from
the TAU Urban Acoustic Scenes 2020 Mobile dataset [S5]. This
dataset consists of recordings captured at distinct locations in 12
European cities with four different devices, and split into 10-second
segments. The duration of recordings ranged from 5 to 6 min.
The first deivce was a Zoom F8 multitrack recorder connected to a
Soundman OKM II Klassik/studio A3 binaural microphone, hence
producing a stereophonic signal. The microphone response can be
considered flat between 20 Hz and 20 kHz. The other three devices
were consumer devices not designed for professional audio perfor-
mance: two mobiles phones (Samsung Galaxy S7, and iPhone SE)

# Class name Location type
1 Airport Indoor
2 Indoor shopping mall Indoor
3 Underground station Indoor
4 Pedestrian street Outdoor
5 Public square Outdoor
6 | Street with medium level of traffic Outdoor
7 Travelling by tram Transport
8 Travelling by bus Transport
9 Travelling by underground Transport
10 Urban park Outdoor

Table 1: Classes of acoustic scenes: 3 transport, 4 indoor, 3 outdoor.

and a video camera (GoPro Hero5 Session). Some recordings ob-
tained with the first device were used as sources for generating au-
dio signals corresponding to 11 additional simulated devices by cal-
culating the convolution with corresponding estimated impulse re-
sponses. Each recording location corresponded to one of the classes
listed in Tab. 1.

For task 1A all audio recordings were converted to a sampling
rate equal to 44.1 kHz and 24 quantization bits, regardless the capa-
bilities of the recording device. For device A, only one channel was
used. In the case of task 1B, only recordings from device A were
used, but including both channels, and sampled at 48kHz.

3. SIGNAL ANALYSIS

All audio crecodings were first preprocessed to subtract their mean
values. Their mean square values were subsequently normalised.
‘When both binaural channels were processed (task 1B), normalisa-
tion was performed by the same factor in both channels so as to pre-
serve their level differences, that is, the root mean square value of all
samples included in both channels was computed for normalisation.
Afterwards, each audio signal was split in frames with duration 1.5
seconds, and 35% overlap between consecutive frames.

Each frame was processed by a filter-bank consisting of 26
gammatone filters [2] with central frequencies ranging from 27.5
Hz to 3587 Hz. The central frequencies of the filter-bank were cho-
sen so that the pass-bands of contiguous filters were adjacent but
not overlapping, i.e. the upper cut-off frequency of one filter was
the same as the lower cut-off frequency of the next. Figure 1 illus-
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Figure 1: Frequency responses of the filters in the filter-bank with
central frequencies up to 3.5 kHz (25 filters).

trates the frequency responses for the first filters.

In CASA systems, the filter-bank modelling the cochlear fre-
quency behaviour is followed by a non-linear model of neurome-
chanical transduction [6]. This non-linear system approximately
performs compression of the higher signal peaks and half-wave rec-
tification [7]. As this produces a too detailed set of signals, it is
usual to apply low-pass filtering and decimation afterwards [8]. The
implementation of this model is computationally expensive due to
its non-linearities. For this reason, we substitute it by full-wave rec-
tification followed by a 5'® order Butterworth low-pass filter with
cut-off frequency equal to 80 Hz and decimation to yield a sampling
frequency equal to 200 Hz.

Each resulting frame is further processed by computing its dis-
crete Fourier transform (DFT). The EMS [1] is obtained by stacking
the square modulus of the DFT corresponding to the 26 gammatone
filters. In order to reduce the dimensionality of the EMS, its com-
ponents corresponding to the fastest variations of the signal were
discarded. Specifically, a threshold of 30 Hz was set for the modu-
lation frequency. Therefore, each signal frame was represented by
a matrix, i.e. EMS, of 26x 11 elements. The first data column rep-
resents the average energy at the output of each gammatone filter,
i.e. the long-term average spectrum (LTAS) of the audio frame. The
remaining 10 columns represent the energies of amplitude modula-
tions between 0 and 3 Hz, between 3 and 6 Hz, etc.

The signal analysis scheme described so far transforms one
channel of the audio recorded during 1.5 seconds into a feature vec-
tor of 26 x 11 = 286 components. The dimensionality of this fea-
ture space was reduced as follows. As stated before, the first column
in the EMS corresponds to the average energy at each frequency
band. This is relevant for discriminating among certain types of
acoustic events [9], so the corresponding 26 values for each EMS
were kept unchanged. Only a logarithm operation was applied in
order to reduce the skewness of their distribution. Similarly to the
approach in [10], the remaining 15 columns of each EMS were pro-
cessed as if they were a grey-scale image. Specifically, the two-
dimensional discrete cosine transform (DCT) [11] of the logarithm
of the EMS was calculated, and the block corresponding to the first
10 x 10 DCT coefficients was chosen as a lower-dimensional repre-
sentation of each 26 x 15 EMS. Therefore, after this dimensionality
reduction, each audio frame of duration 1.5 s was represented by a
feature vector with 26 + 100 = 126 components.

The cross correlation between the signals captured at micro-
phones placed in different positions is known to incorporate infor-
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mation about the directions of arrival [12], and hence the spatial
distribution of sound sources. The shape of the cross correlation is
coded using the first coefficients of its power cepstrum [13]. Specifi-
cally, coefficients up to the 200" were taken, but discarding the first
one since it only represents the average spectral energy. Addition-
ally, for task 1B the resolution for modulation frequencies was 2Hz,
thus producing 15 modulation bands: from 2Hz to 30Hz in steps of
2Hz. Therefore, for task 1B the feature vectors representing each
1.5s audio frame consisted of 126 coefficients describing the EMS
of the left channel plus 199 coefficients corresponding to the cep-
strum of the cross-correlation between left and right channels.

4. CLASSIFICATION

The afore-mentioned feature vectors were used as inputs for a mul-
tilayer perceptron (MLP) two hidden layers. For task 1A the first
hidden layer comprised 40 neurons. The first 8 neurons were con-
nected to the 26 inputs corresponding to the LTAS of each frame;
the reamining 32 neurons were connected to the 10 x 10 DCT co-
efficients representing the EMS. The second hidden layer was com-
posed by 24 neurons fully connected to the first hidden layer. The
hyperbolic tangent was chosen as the activation function for hidden
neurons. The output layer was formed by 10 neurons, one corre-
sponding to each class in Tab. 1. These output neurons had soft-
max activation functions[3]. Thus, their outputs represented the es-
timated a posteriori probabilities of each scene class corresponding
to the input feature vector associated to each 1.5 s frame. The MLP
corresponding to task 1A had 11,264 adjustable parameters, each
having a length of 8 bytes.

The overall a posteriori probability of each class for a 10 s audio
segment was estimated by adding up the logarithms of the probabil-
ities of its frames. For all frames, segments and recordings, the
class assigned by the MLP was estimated to be the class yielding
the highest a posteriori log-probability.

For task 1B, a MLP with a similar structure was used, but with
a different number of neurons per layer. In this case the first hidden
layer consisted of 81 neurons: 50 linked to the inputs correspond-
ing to the cepstrum of the cross-correlation, 6 linked to the LTAS,
and 25 taking inputs from the 10 10 coefficients of the DCT of the
EMS. The second hidden layer included 6 neurons, fully connected
to adjacent layers. The output layer comprised 3 neurons, one corre-
sponding to each scene type (indoor, outdoor,transport). The MLP
corresponding to task 1B had 13,197 adjustable parameters, each
having a length of 8 bytes.

5. EXPERIMENTS & RESULTS

The classification experiment corresponding to the baseline evalua-
tion procedure proposed for the Acoustic Scene Classification with
Multiple Devices task (1A) DCASE 2020[4] was run. The over-
all correct classification rate (CCR) for audio segments is 57.07%,
while the per-class performance is as indicated in table The confu-
sion matrix corresponding to this experiment is in Tab. 2.

Results corresponding to the Low-Complexity Acoustic Scene
Classification task (1B) are summarised in Tab. 2.

6. CONCLUSIONS

This paper presents a system for the automatic classification of
acoustic scenes based on the EMS and the cross-correlation between
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Class CCR (%)
Airport 41.1
Indoor shopping mall 54.9
Underground station 37.4
Pedestrian street 35.7
Public square 29.0
Street with medium level of traffic 82.2
Travelling by tram 95.3
Travelling by bus 74.4
Travelling by underground 48.1
Urban park 72.7

Table 2: Per-class correct classification rates for task 1A.

Class CCR (%)
Indoor 84.05
Outdoor 89.30
Transport 89.45
[ OVERALL | 8777 |

Table 3: Per-class correct classification rates for task 1B.

binaural channels when available. The signal analysis scheme was
designed taking into account several issues. The first stages of the
system are a simplification of the peripheral auditory system [8].
The specific responses of the gammatone filters were chosen so
that the filter-bank fully covered the pass-band of the microphone.
The average energy at the output of each filter was kept as a fea-
ture, hence accounting for the relevance of the energy spectrum for
acoustic event detection [9]. Slow modulations of these energies
were described by reducing the dimensionality of the EMS using the
DCT, a common-use tool for data compression in image process-
ing [11]. Information on the spatial distribution of sound sources
present in binarual recordings has been represented using the power
cepstrum of the cross-correlation between audio channels. In all
cases, the signal bandwidth has been limited to less than 4kHz in
order to increase robustness against diversity in device bandwidth.
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