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ABSTRACT

In this technical report, we describe our anomalous sound detection
(ASD) systems submitted in DCASE 2020 Task2. To improve the
ASD performance in the reverberant and noisy condition, normal
machine sound augmentation, focused hypothesis test, and selecting
the distinctive spectral features is applied to deep neural network
(DNN)-based autoencoder (AE). In the experiments, we found that
our approaches outperform baseline methods under the condition
that only reverberant and noisy normal sound samples have been
provided as training data.

Index Terms— DCASE Challenge 2020 Task2, Anomalous
sound detection, Unsupervised learning, Deep neural networks, Au-
toencoder, Data augmentation

1. INTRODUCTION

Recently, unsupervised learning-based anomaly sound detection
(ASD) methods have been actively researched. Even though, a
large-scale database is essential for training and fairly evaluating
sound detection algorithm, in real-world, anomalous sounds rarely
occur and are highly diverse. Therefore, massive patterns of anoma-
lous machine sounds are impossible to deliberately make and/or col-
lect. This means we have to detect unknown anomalous machine
sounds that were not reflected in the given training data.

Most ASD systems adopt outlier detection techniques because
it is difficult to collect a massive amount of anomalous machine
sound data. In [1], deep neural network-based autoencoders (AE)
have been adopted to build up ASD systems. Acoustic feature is
extracted from encoder part of AE, and then input vector recon-
structed at the decoder part of AE. By using reconstruction error of
AE, defined as mean square error (MSE) between input and recon-
structed vector, statistical hypothesis test result can be computed
with pre-defined threshold value [2]. In [3]-[4], AE-based acous-
tic feature extractor can be optimized to maximize the true positive
rate under an arbitrary false positive rate by adopting the Neyman-
Pearson Lemma. Furthermore, in [4], the authors proposed an out-
lier sampling algorithm in latent vector space to artificially generate
anomalous machine sounds in order to increase the difference of
hypothesis test results between normal and anomalous sounds.

In Detection and Classification of Acoustic Scenes and Events
(DCASE) 2020 Challenge [2], unsupervised detection of anoma-
lous sounds for machine condition monitoring has been launched.
This task also provides a freely accessible machine sound database
[5]-[6], which consists of normal and anomalous operating sounds

of six types of toy and real machines. To improve the accuracy of
anomalous machine sound detection, we used relevant spectral fea-
tures such as linear- and log-scaled spectrogram and used data in
a focused range of the hypothesis test for evaluating our submitted
systems. With the provided development set, we achieved the area
under the receiver operating characteristic (ROC) curve (AUC) of
81.79% and the partial-AUC (pAUC) of 68.55%.

2. REVIEW OF THE BASELINE SYSTEM

The AE-based baseline system [2] of DCASE Challenge task2 con-
sists of 9 fully-connected layer where batch normalization and recti-
fied linear unit (ReLU) activation function are applied for all layers
except for the output layer. Each machine sound sequence is con-
verted to the time-frequency domain by using short-time Fourier
transform (STFT) with frame size of 1024 and half overlap. After
that, every 5 consecutive STFT coefficients are fed into a mel-filter
bank to obtain 128 dimension log mel spectra feature vector. Input
feature vector x can be reconstructed as follows:

x̂τ = D{E{xτ |θE}|θD} (1)

Here, E and D denote the encoder and decoder parts of AE respec-
tively, and θE and θD correspond to model parameters. After that,
by using reconstructed feature vector x̂τ , anomaly score A is de-
fined as the MSE between input xτ and reconstructed vector x̂τ as
given by

A(x, x̂) = E{||x− x̂||22} (2)

where E{·} and || · ||2 denote mathematical expectation and L2

norm, respectively. Finally, anomaly score is classified when the
score A exceeds threshold value.

3. SUBMITTED SYSTEMS

In this section, we describe our submitted ASD systems using sev-
eral techniques including normal machine sound augmentation, var-
ious spectral features, and focused hypothesis test in order to im-
prove ASD performance in the reverberant and noisy conditions.
The simplified block diagram of our proposed system is depicted in
Fig. 1. Each method is described in the following subsections.

3.1. Normal machine sound augmentation

The AE-based ASD system can be improved by increasing the dif-
ference of anomalous scores between normal and anomalous ma-
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Figure 1: The block diagram of our submitted ASD system

chine sounds. By doing so, we generate normal machine sound by
using latent space sampling method [4] and regard augmented nor-
mal sound samples to decrease averaged anomalous scores.

In this system, machine type-wise augmentation model has
been used to construct augmented normal sound samples. The aug-
mentation model is trained to jointly minimize Kullback-Leibler di-
vergence (KLD) and reconstruction error (RE). KLD and RE are
defined as given by

Jjoint = JKLD + JRE
= D(N (Egen(x)|0, I)||N (Egen(x)|µgen,Σgen))

+ E{||x−Dgen(Egen(x))||22} (3)

whereD(·||·) andN represent KLD and multivariate Gaussian dis-
tribution, respectively. Also, Egen and Dgen are the encoder and
decoder model parameters of the augmentation model. Further-
more, statistics parameters of the encoder output are calculated as
µgen, Σgen. These cost functions make that encoded output has a
pre-defined distribution, zero-mean and unit-variance multivariate
Gaussian model, and generated normal machine sound sample is
more likely normal sound in the provided training set.

After training the augmentation model, acoustic features are
randomly sampled from the multivariate Gaussian model N (0, I),
then normal machine sound samples are generated from the decoder
part of augmentation model. One of our submitted system uses the
augmented normal machine sound samples to improve ASD accu-
racy.

3.2. Machine-type-wise feature selection

In the provided baseline system, AE is trained toward minimizing
reconstruction error between input and reconstructed log-mel spec-
trogram feature vector. However, in [2], some types of machine
sound have a limitations to improve ASD accuracy. To avoid lim-
itation of ASD performance, we consider several time-frequency-
domain spectral features such as linear-scale spectrogram, harmon-
ics and percussive source separation (HPSS) [7], and median filtered
spectrogram [8]. In Fig. 2, comparison result of feature vector ex-
tracted from a normal valve sound is shown. As shown in Fig. 2
(a) and (b), we found that significant pattern loss with using log-
mel spectrogram feature vector. Since these dimension reduction
might occur performance degradation in ASD, submitted systems
are trained on linear-scale-based spectral feature vectors to over-
come loss of recognizable pattern. Feature vectors are differently

Figure 2: Comparison of spectral feature vectors extracted from
normal value sound (a) log-mel spectgorgam (b) linear-scale spec-
trogram

selected in machine type according to entire ASD accuracy. The
result of ASD accuracy across different features is summarized in
Table I.

3.3. Focused hypothesis test

In the provided training set, normal machine sound was recorded
in the presence of factory noise and reverberation. There are none
label information of normal machine sound period. After the cost
function of AE model converges, baseline ASD system makes de-
cision according to hypothesis test resultsH as follows:

H(A(x, x̂)) =

{
1(Anomalous), A(x, x̂) > φ

0(normal), otherwise
(4)

where φ is a pre-defined threshold value. Since averaged RE in
frames are considered to decide the status of machine sound in
(4), averaging RE in the machine sound periods has advantage to
improve entire ASD performances. However, in the unsupervised
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Table 1: Performance of the baseline AE model across various spectral features
Feature vector
(dimension)

AUC (%) pAUC (%)
1 2 3 4 5 6 Avg 1 2 3 4 5 6 Avg

Log-mel (128) 78.77 72.53 65.83 72.89 84.76 66.28 73.51 67.58 60.43 52.45 59.99 66.53 50.98 59.66
Spectrogram (512) 78.76 71.03 64.17 74.50 92.35 82.87 77.28 63.81 60.12 51.86 62.35 76.92 56.11 61.86

Log-mel(128)
+spectrogram(512) 69.78 76.50 66.17 70.20 91.97 81.42 76.01 57.68 62.67 52.35 62.04 75.88 56.22 61.14

Log-mel(128)
+MF spectrogram(512) 80.78 74.57 67.29 73.14 87.22 72.16 75.86 68.54 61.18 52.55 60.83 69.62 51.50 60.70

learning scenario, we cannot precisely choose RE in the machine
sound periods. To focus on RE in the normal sound periods indi-
rectly, focused hypothesis test is adopted to our submitted systems.
We found that RE of machine sound periods is lower than noise pe-
riod when the machine types are valve and slider. In that case, frame
energy of normal machine sounds are significantly larger than noise
sounds. On the other hand, other types of machine sound show op-
posite pattern. From these observations, we rectify RE in frames by
sorting ascending order and rejecting outliers as given by

Ã(x, x̂, φl, φu) =

{
pass, φl < Asort(x, x̂) < φu

reject, otherwise
(5)

where Asort(x, x̂) is a sorted version of A(x, x̂) in ascending or-
der. Additionally, φl and φu are the threshold values for focusing
RE, which are chosen empirically and differently for each machine.
The concept of the focused hypothesis test is depicted in Fig. 1.

4. EXPERIMENTS AND SUBMISSIONS

We evaluated our system performances using the officially provided
training set [5]-[6]. The training set consists of only normal ma-
chine sound. Each machine sound was recorded with a single mi-
crophone and sampled at 16 kHz. The recorded machine sound
contains the normal machine sound as well as the factory noise sig-
nal, and label of the machine periods was not provided. To train
our ASD systems, we extracted various spectral features as follows:
spectrogram, HPSS, and median filtered spectrogram. The spectro-
gram feature was extracted with a frame size of 1024 and half over-
lap. Also, HPSS and median filtered feature were simply applied
by using numerical python library, librosa [9]. Normal sound was
generated about 30% of the entire training set. For optimal learning,
the ADAM optimizer with learning rate 0.001 was set to training AE
model of our ASD systems. The dimension of each spectral feature
and comparison of performances across the features are summa-
rized in Table 1 where machine classes are replaced as numbers as
follows: ToyCar(1), ToyConveyor(2), Fan(3), Pump(4), Slider(5),
Valve(6). According to the results in Table 1, it was confirmed that
the optimal ASD performance in each spectral feature is different
for each machine. In accordance with this aspect, we constructed
four ASD systems for submission based on whether different fea-
tures are used for each machine, whether augmentation is applied,
or whether focused hypothesis test is applied. Best performance of
our proposed ASD system is summarized in Table 2.

5. CONCLUSIONS

This technical report decribes our ASD systems submitted in
DCASE 2020 Task2. We applied normal sound augmentation, var-
ious spectral features, and focused hypothesis test for improving

Table 2: Machine-wise performance for the best proposed method

Machine Baseline Best proposed
AUC (%) pAUC (%) AUC (%) pAUC (%)

ToyCar 78.77 67.58 82.73 70.35
ToyConveyor 72.53 60.43 76.61 64.04
Fan 65.83 52.45 70.77 54.50
Pump 72.89 59.99 76.80 65.56
Slider 84.76 66.53 94.16 83.97
Valve 66.28 50.98 89.67 72.85
Average 73.51 59.66 81.79 68.55

ASD performance in the noisy and reverberant environment. En-
sembling these methods, the best system could achieve ASD per-
formances, AUC and pAUC above 81% and 68%, respectively.
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