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ABSTRACT

This report presents the dataset and the evaluation setup of the
Sound Event Localization & Detection (SELD) task for the DCASE
2020 Challenge. The SELD task refers to the problem of trying to
simultaneously classify a known set of sound event classes, detect
their temporal activations, and estimate their spatial directions or
locations while they are active. To train and test SELD systems,
datasets of diverse sound events occurring under realistic acous-
tic conditions are needed. Compared to the previous challenge, a
significantly more complex dataset was created for DCASE 2020.
The two key differences are a more diverse range of acoustical
conditions, and dynamic conditions, i.e. moving sources. The
spatial sound scenes are created using real room impulse responses
captured in a continuous manner with a slowly moving excitation
source. Both static and moving sound events are synthesized from
them. Ambient noise recorded on location is added to complete the
generation of scene recordings. A baseline SELD method accompa-
nies the dataset, based on a convolutional recurrent neural network,
to provide benchmark scores for the task. The baseline is an up-
dated version of the one used in the previous challenge, with input
features and training modifications to improve its performance.

Index Terms— Sound event localization and detection, sound
source localization, acoustic scene analysis, microphone arrays

1. INTRODUCTION

Sound event localization and detection (SELD) takes the currently
active research topic of temporal sound event detection (SED) [1]
and connects it with the spatial dimension of event location or
acoustic direction-of-arrival (DoA). Hence SELD aims to a more
complete spatiotemporal characterization of the acoustic sound
scene, with predictions on the type of sounds of interest in the
scene, their temporal activations, and their spatial trajectories when
they are active. This spatiotemporal scene description has a wide
range of applications in machine listening, ranging from acous-
tic monitoring and robot navigation to intelligent human-machine
interaction and deployment of immersive services.

Until the DCASE2019 Challenge1, only a handful of ap-
proaches in literature were aiming some form of SELD [2–8]. Apart
from [5, 8] which are fully deep-neural network (DNN) based ap-
proaches, these earlier works employed more traditional source lo-
calization methods such as time-difference-of-arrival (TDoA) [2,7],
steered-response power [3], or acoustic intensity vector analysis [6],
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and Gaussian mixture models [2], hidden Markov models [3], sup-
port vector machines [6], or a simple artificial neural network [7]
for classification. Additionally, most of them treated detection and
localization independently, with only [4, 7] joining beamforming
outputs after localization with the event classifiers.

Recently, DNNs have dominated SED approaches [1], and they
have been applied successfully to pure source localization [9–11],
showing potential for joint modeling of the SELD task. The first
works we are aware of this approach are [5,8]. Hirvonen in [5] used
a convolutional neural network (CNN) with localization targets at
discrete directions-of-arrival (DoAs), setting the SELD task as a
multilabel-multiclass classification problem. In [8] we proposed
the SELDnet, a convolutional recurrent neural network (CRNN)
with two output branches, one for SED and the other for localiza-
tion. Contrary to [5], localization here was based on a regression
approach with one DoA predicted per sound class. Both proposals
were using simple generic features, such as multichannel power [5],
or phase and magnitude [8], spectrograms.

Due to its relevance in all the aforementioned applications,
SELD was introduced as a new task in DCASE 2019 Challenge,
and as such, it required a new dataset for training and evaluation
of the submitted methods. This dataset, the TAU Spatial Sound
Events 20192, comprised scenes with events from 11 classes,
spatialized through captured room impulse responses (RIRs) as
static sources at 504 possible locations for each of 5 different
spaces [12]. Along with the dataset, a SELDnet implementation
was provided by the authors as a baseline for the challenge par-
ticipants3. The challenge attracted more than 20 original methods,
with most methods surpassing significantly the baseline4. Many in-
novative solutions were presented for the task, such as more refined
SED and localization features [13–15], a multi-stage modeling and
training approach [13], data augmentation [16, 17], exploitation of
domain-specific knowledge [14, 18], state-of-the-art network archi-
tectures [19, 20], ensembles [21], or combinations of model-based
localization and DNN-based event detection [22].

In this work we present the new dataset TAU-NIGENS Spatial
Sound Events 20205 aimed for the next iteration of the SELD task
in DCASE 2020 challenge6. The dataset preserves all the realistic
properties of the previous one: realistic reverberation and ambient
noise based on real measured spaces, variable acoustic conditions

2https://zenodo.org/record/2580091
3https://github.com/sharathadavanne/

seld-dcase2019
4http://dcase.community/challenge2019/

task-sound-event-localization-and-detection-results
5https://zenodo.org/record/3740236
6http://dcase.community/challenge2020/

task-sound-event-localization-and-detection
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from a variety of rooms, large range of source positions with re-
spect to the microphone, and two different recording array formats
for the participants to exploit. However, the dataset overcomes the
major limitations of the past one: more sound examples per class,
a greater number of rooms, much more diverse acoustic conditions,
and non-quantized source positions in a predefined grid of direc-
tions. Apart from improvements, the dataset introduces moving
sources for about half of the active events, which makes it signif-
icantly more challenging, demanding closer to a real-life perfor-
mance from the submissions.

Along with the dataset, we introduce improvements on two ad-
ditional fronts. Firstly, the baseline implemented and published
along with the dataset remains the SELDnet architecture of [8],
due to its conceptual simplicity and efficient architecture. How-
ever, several small changes are introduced that reflect the most com-
mon improvements used by DCASE2019 participants, to make it
more effective with the new more challenging dataset. Secondly,
instead of measuring performance independently for SED and lo-
calization, as in DCASE2019, we introduce the recently proposed
metrics that consider joint SELD performance [23], reflecting better
the expected performance differences between systems that localize
the correct events at their correct position, and systems that detect
and/or localize well independently.

2. REVERBERANT DYNAMIC DATASET

2.1. Sound events

Sound event samples were sourced from the recently published NI-
GENS General Sound Events Database7. This database provides a
higher number of samples and classes than the one used in the pre-
vious challenge. 714 sound examples are distributed between 14
classes of alarm, crying baby, crash, barking dog, running engine,
burning fire, footsteps, knocking on door, female & male speech, fe-
male & male scream, ringing phone, piano. For more details on the
recordings and the database in general, the reader is referred to [24].

2.2. Recording of multichannel RIRs

The overall recording procedure was kept similar to the one em-
ployed in the previous dataset [12], with differences highlighted
below. For DCASE2019, real recorded RIRs were captured from
5 rooms. However, all of those rooms were large publicly acces-
sible open spaces in university buildings. Furthermore, the grid of
source positions around the microphone was kept constant between
rooms, with two possible source distances at 1m or 2m. Both of
these conditions resulted in the direct sound and floor reflections
being dominant and, in general, in high direct-to-reverberant ratios
(DRR). For DCASE2020, to add more variability in acoustical con-
ditions and more challenging reverberation, we recorded 10 more
rooms of diverse shapes and types, such as lecture halls, large class-
rooms, small classrooms and meeting rooms, a modern sports hall,
and a sports hall in an underground nuclear shelter with rock walls.

Similarly as in the DCASE2019 dataset, instead of RIR mea-
surements at discrete source-receiver points, a very large range of
source positions is covered by recording pseudo-random noise
(MLS) emitted by a slowly moving source along predefined
tracks [25]. The source is a Genelec G Three8 loudspeaker mounted
on a wheeled platform. The platform is moved manually during

7https://zenodo.org/record/2535878
8https://www.genelec.com/g-three

the duration of the recording, while the microphone array is immo-
bile. The recording is done with a 32-channel compact spherical
microphone array (SMA), the em32 Eigenmike9. An SMA with
high channel count is chosen due to its uniform spatial resolution
up to high frequencies, and to its flexibility in allowing us to extract
a variety of smaller spatial formats from the same recording.

Contrary to the DCASE2019 dataset, the recording trajectories
in the new rooms are different for each one of them. In some rooms,
the recordings were done in circular trajectories, but at differing dis-
tances and elevations, while in other rooms linear trajectories at var-
ious heights were used. The RIRs were extracted from the moving
source recordings through a simple linear regression on the filter
coefficients between the clean MLS sequence and the recorded out-
put, similar to [26]. RIRs extracted along circular trajectories have
a more or less constant elevation, distance, and DRR, while ones
extracted along linear trajectories have varying elevation, distance,
and DRR, with respect to the recording position.

Similarly to DCASE2019, apart from the MLS noise sequences,
30 mins of spatial ambient noise were additionally captured in each
room with the recording setup unchanged. Contrary to the 5 earlier
rooms which were accessible by passing crowds at any time, the
new room recordings contained mostly ventilation noise.

2.3. Reference RIRs and positional labels

During the synthesis of the spatial mixtures, sound events are
intended to be spatialized at consistent DoAs across different en-
vironments, meaning that the direct path for the same DoA, as
encoded in the array channels, should be similar between rooms
so that the methods can rely on it for localization while being
robust to the dissimilar reverberation patterns that follow. In the
DCASE2019 dataset, the recorded trajectories were assumed to
have the exact same geometry with respect to the microphones,
across rooms. Static RIRs were extracted along circular trajectories
with an angular separation of 10 degrees, and the final grid of ref-
erence positions was intended to be the same for all rooms. In this
case, we found good alignment between the intended geometric
positions and the actual acoustic DoAs seen by the microphone
array, and the reference DoA-RIR pairs were assumed to be on a
spherical grid of fixed azimuths and elevations.

Assuming a constant speed of motion, the same process could
have been applied to the new more spatially complex measure-
ments, since the geometry of each trajectory was planned before-
hand. However, this assumption proved unrealistic, due to varying
speeds and geometric misalignment between the intended and the
real recording geometry. To address this issue, an additional 360
video track was recorded along with the audio recording, with the
camera 10 cm above the microphone array, and a simple video ob-
ject tracking algorithm, bounded on the loudspeaker, was used for
estimating a reference DoA at all times of the recording. However,
even though the video tracking was stable, it was found that small
rotational misalignment between the camera and the array frame of
reference could reflect large DoA differences.

According to the above, we finally decided to estimate the refer-
ence DoAs acoustically, directly from the extracted RIRs, as these
would reflect consistently the ones encoded into the multichannel
mixture during the synthesis stage using the same RIRs. To that pur-
pose, for each source trajectory we: a) extracted the multichannel
RIRs at 200-millisecond intervals, b) estimated direct path delays
from geometry and measurements, c) windowed the RIRs around

9https://mhacoustics.com/products#eigenmike1
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their direct path, and d) applied a broadband version of the sub-
space MUSIC algorithm for estimation of the DoA corresponding
to that early part of the RIR. From that list of RIR-DoA pairs, the
final reference ones were determined by selecting the ones closest
to the geometric reference trajectory, at approximately 1-degree in-
tervals. Note that the same process was applied also to the 5 earlier
rooms recorded for the DCASE2019 dataset.

2.4. Dataset Synthesis

All extracted multichannel RIRs and sound event samples were re-
sampled to 24 kHz. From the 8 provided splits of the NIGENS
dataset, 6 were used for the creation of the development, and the
remaining 2 for the evaluation datasets. One or two rooms were as-
signed to each split, and 100 mixtures of spatialized sound events
were generated for each such combination of event samples and
rooms. Each generated mixture was 1 minute long. The onsets of
sound events in each recording were randomly distributed but con-
strained by the allowed level of polyphony (number of simultaneous
events), which could be either one or two.

An event was randomly chosen to be either static or moving.
Static events were assigned randomly a DoA from the list of ref-
erence ones available for the specific room. Moving sound events
were assigned randomly one of the RIR recording trajectories for
the specific room, hence limiting their motion along that path. How-
ever, the movement direction and the rate of motion could be dif-
ferent for each event. The direction of movement was randomized,
while the speed of motion was randomly chosen from three levels of
slow (�10 deg/sec), medium (�20 deg/sec), and fast (�40 deg/sec).
Additionally, since each trajectory was recorded at different heights,
moving sound events reaching the end of a path had the possibility
to jump to a higher or lower elevation and continue their motion on
the respective path of that height.

Static events were spatialized by convolution with the respec-
tive RIRs for their intended DoA, and added to the mixture. Mov-
ing sound events were spatialized by a time-variant convolution
scheme, performed between the STFT of the event sample and the
STFTs of all the RIRs encountered along the path of motion. The
operation resembled a partitioned convolution scheme, with RIRs
being combined with a cross-fading scheme giving more weight to
frames of past RIRs for the reverberation tail, and more weight to
frames of the recently encountered RIRs for the direct path and early
reflections. Since the reference DoAs were extracted at about 1� in-
tervals along a trajectory, the speed of motion was controlled by
using 10 (slow), 20 (medium), or 40 (fast) consecutive RIRs per 1
second of output. Very short events of up to 2 seconds were ex-
cluded from being dynamic, and were assigned static DoAs instead.

After the convolved spatialized sound events were added to
each multichannel mixture with the intended polyphony, ambient
noise from the same room was additionally mixed. The original
ambient noise recordings were split into 1-minute segments and
added to the mixtures at varying signal-to-noise (SNR) levels be-
tween from 30 dB to 6 dB. An omnidirectional component was ex-
tracted through a linear combination of the channels of the noise-
less mixture and the ambient noise recording, and the power ratio
between the two signals was tuned to match the intended SNR. The
respective gain factor was then applied to the ambient noise segment
before adding to the mixture. Since the duration of the recorded am-
bient noise at each room was less than the total duration of the mix-
tures generated for that room, additional 1-minute noise segments
were artificially generated by simply mixing two randomly chosen

segments of the recording.

2.5. Dataset Formats

As in the previous dataset for DCASE2019, we opted for delivering
the synthesized sound recordings in two different 4-channel spatial
sound formats, extracted from the 32-channel Eigenmike format.
The first format is a 4-channel microphone array one, extracted di-
rectly by selecting a subset of the Eigenmike channels, correspond-
ing to a tetrahedral capsule arrangement (MIC). The second format
is the widespread first-order Ambisonics (FOA), extracted through
a matrix of 4 � 32 conversion filters, as detailed in [27]. The ratio-
nale behind offering the dataset in both the MIC and FOA formats
is that each one encodes spatial information differently. The MIC
array format has microphones arranged in spherical coordinates of
(45�, 35�, 4.2 cm), (�45�, �35�, 4.2 cm), (135�, �35�, 4.2 cm)
and (�135�, 35�, 4.2 cm), taken from channels 6, 10, 26, and 22
of the Eigenmike, encoding a DoA with both time-differences, due
to the spacing, and level differences, due to the acoustical shadow-
ing of the hard spherical baffle in between. On the other hand, the
FOA format is space-coincident, offering only level differences and
no time-differences for a single DoA. Hence different features spa-
tial features are better suited to each format, and participants could
exploit one of the two or both.

For model-based and parametric localization approaches, the
multichannel response with respect to a given source DoA, should
be known. The spatial responses of the MIC and FOA formats were
described in [12] and are repeated here for the sake of complete-
ness. The directional responses of the mth channel Hm(�; �; f) to
a source incident from DOA given by azimuth angle � and elevation
angle �, at frequency f , is for the FOA format:

H1(�; �; f) = 1 (1)
H2(�; �; f) = sin(�) � cos(�) (2)
H3(�; �; f) = sin(�) (3)
H4(�; �; f) = cos(�) � cos(�); (4)

corresponding to the SN3D normalization scheme of Ambisonics.
The format is assumed frequency-independent, which holds true up
to about 9 kHz for FOA encoded from the Eigenmike, and deviates
gradually from the ideal response for higher frequencies.

For the tetrahedral array of microphones mounted on a spherical
baffle, an analytical expression for the directional array response is
given by the expansion:

Hm(�m; �m; �; �; !) =

1

(!R=c)2

30∑
n=0

in�1

h
0(2)
n (!R=c)

(2n+ 1)Pn(cos m); (5)

where m is the channel number, (�m; �m) are the specific micro-
phone’s azimuth and elevation position, ! = 2�f is the angular fre-
quency, R = 0:042 m is the array radius, c = 343 m/s is the speed
of sound, cos(m) is the cosine angle between the microphone po-
sition and the DOA, Pn is the unnormalized Legendre polynomial
of degree n, and h0(2)

n is the derivative with respect to the argument
of a spherical Hankel function of the second kind. The expansion is
limited to 30 terms which provide negligible modeling error up to
20 kHz.
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Figure 1: Convolutional recurrent neural network for SELD.

3. BASELINE METHOD

As the benchmark method, we employ an updated version of SELD-
net [8]10. Specifically, we adopt changes to SELDnet that helped to
improve its performance consistently across different submissions
of the DCASE 2019 SELD task. The general improvements pro-
posed in the DCASE 2019 task submissions broadly fall into four
categories - a) array-dependent acoustic feature extraction to en-
hance learning [13, 14], b) different deep-learning architectures, in-
cluding separate models for SED and DOA estimation for robust
learning [13, 19, 20], c) improved training objective for DOA esti-
mation, by employing SED reference as a mask [13], and d) post-
processing of the SELD output based on the dataset characteristics.
Among these improvements, for the current baseline method we in-
clude array-dependent acoustic feature extraction, and train a single
model to jointly estimate SED and DOA as shown in Figure 1. Ad-
ditionally, during the training, the DOA estimation branch uses the
SED output as the mask, and the mean squared error loss is only
computed for the sound events that are active. This strategy was
first published by [13], with significant improvements on the re-
sults, and adopted by other participants in the challenge. Similar to
the original SELDnet, we do not perform any post-processing on its
output.

10https://github.com/sharathadavanne/
seld-dcase2020

Table 1: Evaluation setup
Splits

Dataset Training Validation Testing
Development 3, 4, 5, 6 2 1

The updated SELDnet takes as input multichannel audio at 24
kHz sampling rate. For each of the two datasets, MIC and FOA,
two features are extracted. The first feature, the multichannel mel-
band power spectrogram, is common to both datasets, and, apart
from being a popular SED feature, it additionally captures inter-
channel level differences (ILDs). It is computed for each chan-
nel as 64 log mel-band energies with a 40 ms window, and 20 ms
hop length using a 1024-point FFT. The second, format-specific,
spatial feature for the FOA dataset is the acoustic intensity vec-
tor, which expresses net acoustic energy flux, and is computed at
each of the 64 mel-bands similar to [13, 20]. For the MIC dataset,
we employ the generalized-cross-correlation with phase-transform
(GCC-PHAT) feature computed in each of the 64 mel-bands similar
to [13, 16, 17].

Based on the chosen dataset, the SELDnet is trained using the
corresponding features. For the FOA dataset, the input is of 7�T�
64 dimension, where T is the number of time frames in the input
sequence, and the number 7 arises from 4 channels of 64 dimension
log mel-band energies computed for each of the 4 audio-channels,
and 3 channels of FOA intensity vectors. Similarly for the MIC
dataset, the input is of 10�T�64, where 10 arises from 6 channels
of GCC-PHAT computed between all pairs of audio-channels of the
MIC dataset and 4 channels of log mel-band energies.

Irrespective of the dataset, we employ three convolutional lay-
ers to learn shift-invariant features from the input acoustic feature.
Both the temporal and frequency resolution of the input is reduced
using a max-pooling operation after every convolutional layer. The
final temporal resolution is equal to 100 ms, which is the one speci-
fied by the challenge submission format. Two layers of gated re-
current units are employed to learn the temporal structure from
the convolutional features. Thereafter separate branches of fully-
connected layers are employed to learn SED and DOA estimation.
The SED output layer has sigmoid activations and generates an out-
put of the dimension T=5 � C, which corresponds to the temporal
activity of the C classes (C = 14) at 100 ms resolution. Similarly,
the DOA output layer has tanh activations and generates an output
of the dimension T=5 � 3C, which corresponds to the DOA tra-
jectory of the C classes at the same temporal resolution. The value
3C is due to the Cartesian representation of the DOA for each of
the C classes. During training, the SED branch uses the binary
cross-entropy objective, whereas the DOA branch is updated to use
the masked MSE loss discussed above. The updated SELDnet is
trained using Adam optimizer with a weighted combination of SED
and DOA loss, where DOA loss is weighed 1000 times more than
SED loss.

4. EVALUATION

4.1. Evaluation Setup

The evaluation setup for the development dataset is shown in Ta-
ble 1. Among the six splits in the dataset, the first set is used as the
unseen test split, the second set is used as the validation split during
training, and the remaining sets are used for training. The correct
usage of this evaluation setup is as follows. The best parameters




