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ABSTRACT

This technical report contains a detailed summary of our submis-
sions to the Unsupervised Detection of Anomalous Sounds for Ma-
chine Condition Monitoring (MCM) Task of the IEEE AASP Chal-
lenge on Detection and Classification of Acoustic Scenes and Events
2020 (DCASE). The goal of acoustic MCM is to identify whether a
sound emitted from a machine is normal or anomalous. In contrast
to the task coordinator’s conjecture that ’this task cannot be solved
as a simple classification problem,’ we show that a simple binary
classifier substantially outperforms the provided unsupervised Au-
toencoder baseline across all machine types and instances, if out-
liers i.e., various other recordings, are available. In addition to this
technical description, we release our complete source code to make
our submission fully reproducible1.

Index Terms— Unsupervised Anomaly Detection, Outlier-
Exposed Classifiers, Machine Condition Monitoring, DCASE2020

1. INTRODUCTION

The aim of acoustic Machine Condition Monitoring (MCM) is to
detect sounds which deviate from what is considered ’normal’ for a
specific machine or a class of machines and utilize this information
for various downstream tasks, such as failure detection or predictive
maintenance.
Anomaly detection methods, in general, can be broadly divided
into supervised and unsupervised methods. In the first setting,
both normal and abnormal samples are available and labeled; the
learning task is to fit a classifier (Fig. 1a). Unfortunately, due to the
variety and rare nature of anomalies, it is often hard to define and
collect anomalies in practice. In the second setting, only normal
recordings are available for learning (Fig 1b). Therefore, the
learning objective turns into creating a model of what is regarded
as normal (e.g., a density model), which is then used to assign
anomaly scores to samples (e.g., based on log-likelihoods).
In this technical report, we distinguish between three types of data:
normal data, which are all possible sounds emitted from a machine
in a normal operation state; abnormal data, which comprises all
sounds emitted from a machine in a non-normal state; and outliers,
which are all other possible sounds in the audio domain excluding
the two previous categories (Fig. 1).
Recent work in unsupervised [1] and supervised [2] anomaly
detection leverages large amounts of unlabeled outlier data, which
is commonly referred to as outlier exposure. Along the same
line, we call classifiers trained with outlier data outlier-exposed

1https://gitlab.cp.jku.at/paulp/dcase2020 task2

classifiers.
In the following sections we are going to motivate outlier-
exposed classifiers for machine condition monitoring, present our
results and compare them to the provided Autoencoder baseline [3].

(a) Supervised Setting (b) Unsupervised Setting

(c) Outlier-Exposed Setting

Figure 1: Comparison between supervised (1a), unsupervised (1b),
and outlier-exposed anomaly detection settings (1c). Blue area rep-
resents the negative, orange the positive class. Samples in the grey
area are not available/ used. Although the classical supervised set-
ting would be optimal, real anomalies are rare and/ or expensive to
collect.

2. OUTLIER-EXPOSED CLASSIFIERS

If both normal and abnormal samples are available for training,
anomaly detection can be considered a classification task, where
normal samples belong to the negative class, and abnormal sam-
ples belong to the positive class (Fig. 1a). However, the lack of
anomalous samples generally prevents us from modeling anomaly
detection in this supervised framework.
To be able to still treat anomaly detection as a classification task, we
extend the definition of the positive class to include various other
samples, i.e., samples that are neither normal nor abnormal but still
in the same domain (outliers for short). If the anomaly detection
problem is framed this way, the classifier has to distinguish normal
samples from any other possible sample in the same domain. For

https://gitlab.cp.jku.at/paulp/dcase2020_task2
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ResNet Residual Block (RB)

Type #K KS 1 KS 2 Type KS

Conv c · 20 5 Conv KS 1
BN - - BN
RB c · 20 3 1 Conv KS 2
Max Pool - 2 - BN
RB c · 20 3 3 Add Input
Max Pool - 2 -
RB c · 20 3 a
RB c · 20 3 b
Max Pool - 2 -
RB c · 21 1 1
RB c · 22 1 1
RB c · 22 1 1
Conv 1 1 -
BN - - -
GAP - - -

Table 1: Model architecture for audio classification by Koutini et
al. [4]. #K and KS are the number of kernels and kernel size, respec-
tively. Residual Blocks (RB) consist of two Convolutional (Conv)
layers with #K kernels, each followed by a Batch Normalization
(BN) layer. GAP is a Global Average Pooling Layer. All non-
linearities are ReLUs. a and b are set to either 1 or 3 to control
the receptive filed of the network. c controls the number of convo-
lution filters.

simplicity, we call classifiers trained this way outlier-exposed clas-
sifiers. Note that, in our experiments, no anomalies are available,
and we therefore exclusively train on normal samples and outliers
(Fig. 1c).
For acoustic MCM (and arguably many other tasks), outliers are
comparably cheap and easy to collect, if not already available in
abundance.

3. EXPERIMENTS

We now give a more detailed account of the data sets used, the pre-
processing steps, the neural network architecture, the training pro-
cedure, and the results compared to the provided baseline [3].

3.1. Experimental Setup

First, it is necessary to clarify the terms ’Machine Type’ and ’Ma-
chine ID.’ The term ’Machine Type’ refers to a family of machines,
and ’Machine ID’ is an identifier for a specific machine instance of
a machine type. All our models are trained for a specific machine
instance and not per machine type as done for the baseline system.
We find the baseline method to perform slightly better if trained per
machine ID, but reporting these results here would be out of scope.

3.1.1. Dataset

We experiment with the ToyADMOS [5] and MIMII [6] data sets,
as provided by the task organizers2. The union of both sets com-
prises of normal/ abnormal recordings for six machine types: fan,
pump, slider, valve, toy car, and toy conveyor. For each machine
type, three or four sets of recordings taken from one distinct ma-
chine instance are given for development and three or four more

2http://dcase.community/challenge2020/task-unsupervised-detection-
of-anomalous-sounds#audio-dataset

ID a b c lR loss
1 3 3 128 10−4 BCE
2 3 3 64 10−4 BCE
3 3 3 64 10−4 AUC
4 3 3 64 10−5 BCE
5 1 1 64 10−4 BCE
6 3 3 64 10−5 ACU
7 3 1 64 10−4 BCE
8 3 1 64 10−5 BCE
9 3 1 64 10−4 AUC
10 1 1 64 10−4 AUC
11 3 1 64 10−5 AUC
12 1 1 64 10−5 AUC
13 1 1 64 10−5 BCE

Table 2: Model Variants. a and b are receptive filed modifiers. c is
the number of base channels used. Lr and loss give the learning rate
and the loss used, respectively.

for final evaluation. The recordings of each machine instance are
split into a training and a testing subset. While the training set only
contains normal samples, the test data contains both normal and ab-
normal samples. Labels of the test data are only known for machine
instances in the development set; labels of the test data in the evalu-
ation set are unknown to participants and used to rank the challenge
submissions. Since the labeled test sets of the development set must
not be used for training, we only use it to select models and report
results. For a more detailed description of the data sets we would
like to refer the reader to [3], [5], and [6].
To train an outlier-exposed classifier for a specific machine ID, we
use the training set associated with the given machine ID as negative
samples and the normal sounds of all other instances and machine
types as positive samples. We get better training results if only sam-
ples from those machines which are contained in the same dataset
are used, i.e., we do not use samples from ToyADMOS and MIMII
at the same time for training. This discrepancy could be attributed
to the different recording conditions, which make samples from dif-
ferent data sets trivially distinguishable based on simple statistics
such as mean and standard deviation.

3.1.2. Pre-Processing

Preprocessing is done in a similar way as in the baseline system
[5]: First, the raw audio is normalized to zero mean and standard
deviation one. Then, we re-sample the audio signals to 16000Hz
and compute a mono-channel Short Time Fourier Transform using
1024-sample windows and a hop-size of 512 samples. We weight
the resulting power spectrogram with a mel-scaled filterbank of 128
filters and apply the logarithm to dampen large outliers.

3.1.3. Network Architecture

We use the model architecture (Table 1) introduced by Koutini et
al. [4], a receptive-field-regularized, fully convolutional, residual
network (ResNet) [7] tested in various other audio-related classifi-
cation tasks [8, 9]. We slightly adopt the receptive field by changing
filter sizes as described in Table 1 and Table 2.

http://dcase.community/challenge2020/task-unsupervised-detection-of-anomalous-sounds#audio-dataset
http://dcase.community/challenge2020/task-unsupervised-detection-of-anomalous-sounds#audio-dataset
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3.1.4. Training

We train the model on random snippets of 256 frames length to min-
imize the Binary Cross Entropy (BCE) or the Area Under the Curve
(AUC) loss [10] for 100 epochs using ADAM update rule [11] with
beta1 = 0.9 and beta2 = 0.99 and a batch size of 64. Batches are
stratified to contain 32 positive and 32 negative samples. The num-
ber of base channels, the receptive field modifiers, the loss function,
and the initial learning rate for each model are given in Table 2. We
decay the learning rate by a factor of 0.99 each epoch.

3.2. Results

The final anomaly score for each test sample is computed by av-
eraging the logit outputs over 256-frame windows with hop size
one. The performance of each model variant in terms of AUC and
pAUC averaged per machine type compared to the baseline system
is given in Figures 2 & 3. Note that all outlier-exposed classifiers
outperform the baseline system by a large margin.

4. SUBMISSIONS

To identify the overall best model we rank the model variants ac-
cording to the procedure described in the task description. Finally,
we submit four systems to the challenge:

1. Anomaly scores computed by overall best model variant, i.e.,
model variant ID 1.

2. Anomaly scores computed by best model variant in terms of
average AUC and pAUC per machine type.

3. Anomaly scores median averaged over the five best model
variants in terms of average AUC and pAU per machine type.

4. Anomaly scores median averaged over all model variants per
machine type.

5. CONCLUSION

The results of our experiments suggest a simple binary classifier, in
combination with a set of task-unrelated outliers, can significantly
outperform commonly used unsupervised anomaly detection meth-
ods such as Autoencoders. Strategies to further enhance the per-
formance of outlier-exposed classifiers might involve task-specific
post-processing and feature engineering.

6. ACKNOWLEDGMENTS

I thank Verena Haunschmid and Patrick Praher for initial dis-
cussions, Khaled Koutini for making the implementation of the
receptive-field-regularized ResNet available, and Gerhard Widmer
for his helpful suggestions.

7. REFERENCES

[1] D. Hendrycks, M. Mazeika, and T. G. Dietterich, “Deep
anomaly detection with outlier exposure,” in 7th International
Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019. [Online]. Available:
https://openreview.net/forum?id=HyxCxhRcY7

[2] L. Ruff, R. A. Vandermeulen, B. J. Franks, K. Müller,
and M. Kloft, “Rethinking assumptions in deep anomaly
detection,” CoRR, vol. abs/2006.00339, 2020. [Online].
Available: https://arxiv.org/abs/2006.00339

[3] Y. Koizumi, Y. Kawaguchi, K. Imoto, T. Nakamura,
Y. Nikaido, R. Tanabe, H. Purohit, K. Suefusa, T. Endo,
M. Yasuda, and N. Harada, “Description and discussion
on DCASE2020 challenge task2: Unsupervised anomalous
sound detection for machine condition monitoring,” in
arXiv e-prints: 2006.05822, June 2020, pp. 1–4. [Online].
Available: https://arxiv.org/abs/2006.05822

[4] K. Koutini, H. Eghbal-zadeh, and G. Widmer, “Receptive-
field-regularized CNN variants for acoustic scene classifica-
tion,” CoRR, vol. abs/1909.02859, 2019. [Online]. Available:
http://arxiv.org/abs/1909.02859

[5] Y. Koizumi, S. Saito, H. Uematsu, N. Harada, and K. Imoto,
“ToyADMOS: A dataset of miniature-machine operating
sounds for anomalous sound detection,” in Proceedings
of IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), November 2019, pp.
308–312. [Online]. Available: https://ieeexplore.ieee.org/
document/8937164

[6] H. Purohit, R. Tanabe, T. Ichige, T. Endo, Y. Nikaido, K. Sue-
fusa, and Y. Kawaguchi, “MIMII Dataset: Sound dataset for
malfunctioning industrial machine investigation and inspec-
tion,” in Proceedings of the Detection and Classification of
Acoustic Scenes and Events 2019 Workshop (DCASE2019),
November 2019, pp. 209–213. [Online]. Avail-
able: http://dcase.community/documents/workshop2019/
proceedings/DCASE2019Workshop Purohit 21.pdf

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” CoRR, vol. abs/1512.03385, 2015.
[Online]. Available: http://arxiv.org/abs/1512.03385

[8] K. Koutini, H. Eghbal-zadeh, M. Dorfer, and G. Widmer,
“The receptive field as a regularizer in deep convolutional
neural networks for acoustic scene classification,” in 27th
European Signal Processing Conference, EUSIPCO 2019, A
Coruña, Spain, September 2-6, 2019, 2019, pp. 1–5. [Online].
Available: https://doi.org/10.23919/EUSIPCO.2019.8902732

[9] K. Koutini, S. Chowdhury, V. Haunschmid, H. Eghbal-
zadeh, and G. Widmer, “Emotion and theme recognition in
music with frequency-aware rf-regularized CNNs,” CoRR,
vol. abs/1911.05833, 2019. [Online]. Available: http:
//arxiv.org/abs/1911.05833

[10] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and
N. Harada, “Unsupervised detection of anomalous sound
based on deep learning and the neyman-pearson lemma,”
IEEE ACM Trans. Audio Speech Lang. Process., vol. 27,
no. 1, pp. 212–224, 2019. [Online]. Available: https:
//doi.org/10.1109/TASLP.2018.2877258

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015. [Online].
Available: http://arxiv.org/abs/1412.6980

https://openreview.net/forum?id=HyxCxhRcY7
https://arxiv.org/abs/2006.00339
https://arxiv.org/abs/2006.05822
http://arxiv.org/abs/1909.02859
https://ieeexplore.ieee.org/document/8937164
https://ieeexplore.ieee.org/document/8937164
http://dcase.community/documents/workshop2019/proceedings/DCASE2019Workshop_Purohit_21.pdf
http://dcase.community/documents/workshop2019/proceedings/DCASE2019Workshop_Purohit_21.pdf
http://arxiv.org/abs/1512.03385
https://doi.org/10.23919/EUSIPCO.2019.8902732
http://arxiv.org/abs/1911.05833
http://arxiv.org/abs/1911.05833
https://doi.org/10.1109/TASLP.2018.2877258
https://doi.org/10.1109/TASLP.2018.2877258
http://arxiv.org/abs/1412.6980


Detection and Classification of Acoustic Scenes and Events 2020 Challenge

Figure 2: Average AUC per Machine Type

Figure 3: Average pAUC per Machine Type
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