Detection and Classification of Acoustic Scenes and Events 2020

Challenge

ACOUSTIC SCENE CLASSIFICATION USING EFFICIENTNET
Technical Report

Jakub Swiecicki

jakub.swiecicki@gmail.com

ABSTRACT

This technical report describes our solution to task 1b of the DCASE
2020 acoustic scene classification challenge. Our primary focus was
to develop a single efficient model. We decided to concentrate on
a single model in order to reflect the typical business situation. In
our solution we chose to use log-mel spectrograms with deltas and
delta-deltas features as a sound sample representation. We aug-
mented the data with multiple techniques - mixup, specaugment,
and spectrogram resizing. Our final model used EfficientNet [1]
architecture.

Index Terms— Acoustic Scene Classification, DCASE, CNN

1. INTRODUCTION

Task 1b of the DCASE 2020 [2] challenge is focused on classifying
acoustic scenes in a situation of multiple recording devices. The
goal of the task is to develop a predictive model that generalizes to
unknown recording devices. The development dataset consists of
samples from 3 real and 6 simulated devices, however the training
part of the development dataset uses data from 3 real and only 3 sim-
ulated devices. Finally, in case of the evaluation dataset additional
one real and 5 simulated devices were used.

During the competition we concentrated on a single model as
from our perspective it reflects typical business problems and re-
quirements, where building a big ensemble of models is often im-
possible or impractical. Moreover, we used no audio embeddings
as our intention was to keep our solution as simple as possible.

2. METHODS

As discussed in section 1 we prepared only one model for the com-
petition. Nevertheless, our submission consists of the following ver-
sions of this model:

e m0 - model built only on training part of development dataset,
e ml - model built on whole development dataset,

e m?2 - model built on whole development dataset with less reg-
ularization than model m1,

e m3 - ensemble formed by averaging predictions from models
ml and m2.

The first version was submitted in order to verify the degra-
dation of results compared to development set model performance.
The remaining versions can be viewed as the actual challenge mod-
els.

The models were trained using PyTorch [3].

2.1. Acoustic features

In the submitted systems we used log-mel spectrogram (referred
further as spectrogram) as a feature representation. To calculate the
spectrogram we used 2560 FFT points, 44.1 KHz sampling rate,
hop-length of 700, and 128 frequency bins. The resulting log-mel
spectrogram was of size (128, 640). Then, from each spectrogram
we subtracted its mean (independently for each frequency bin). It
should be noted, that we did not divided spectrogram by its standard
deviation.

Each log-mel spectrogram was later augmented (see section
2.2). Finally, we calculated deltas and delta-deltas features on the
augmented log-mel spectrogram. One exception to this process was
mixup augmentation which was performed after the deltas features
were calculated.

To calculate log-mel spectrogram and deltas features we used
LibROSA python package [4].

2.2. Augmentation

Below we show augmentation techniques we used in final submis-
sion. They are listed in an actual order they were applied.

1. Random crop in the time domain (to 480 data points in time
domain).

2. Random resized crop - scale between 0.7 and 1, target aspect
ratio between 3.1 and 4.5.

3. SpecAugment (without time warping) [5] - number of masks
between 1 and 2, frequency mask rate between 0 and 0.25,
time mask rate between 0 and 0.3.

4. Mixup augmentation [6, 7].

The augmentation steps were performed randomly, i.e. each
augmentation step was performed with a specified probability: ran-
dom resized crop - 0.5, spec augment - 0.7, and mixup - 0.7. A lot
of augmentation steps were inspired by Ruslan Baikulov’s solution
to Freesound Audio Tagging 2019 competition [7].

2.3. Model architecture

Our models are based on EfficientNet architecture [1] and its Py-
Torch implementation in EfficientNet-PyTorch [8]. More specifi-
cally we used b3 version of EfficientNet. The decided to change
dropout rate to 0.375 in case of models m0 and m1 to achieve more
regularization.

2.4. Training

We used Adam optimization algorithm [9] with batch size of 32 and
the cross-entropy loss function. In order to regularize our network

Detection and Classification of Acoustic Scenes and Events 2020

we used weight decay of 0.0005 in case of models m0 and m1, and
0.0001 in case of model m2. All models were trained for 200 epochs
and the learning rate was set according to one cycle policy [10] with
the maximum learning rate of 0.001.

2.5. Validation setup

The development dataset was provided with proposed train/test
split. During development phase we followed the official split and
the results provided in this report are also based on it. The first sub-
mitted model (m0) was developed on the proposed train set, while
other models were developed with the whole development dataset,
after model performance was calculated with the proposed split.

2.6. Inference

The first step of data augmentation was to randomly crop a spec-
trogram to 480 data points in time domain. In order to account for
that, at inference time we splitted each spectrogram into 3 overlap-
ping spectrograms of size 480, so that the whole audio sample was
used for inference.

3. RESULTS

All submitted systems shared the architecture but model m0 was
trained on training dataset, while model m2 was less regularized
version of model m1.

We achieved the highest macro-mean accuracy of 71.9% and
the lowest log-loss of 0.79 with model m3. The performance statis-
tics were calculated on the test set according to official train/test
split. We present more detailed results in tables 1, 2, and 3.

Table 1: Accuracy by model and class.

Class m0-m1 m2 m3
airport 57.6% 60.6% 63.0%
bus 822% 80.8% 82.8%
metro 721% 754% 78.1%
metro_station 751% 71.7% 75.1%
park 822% 185% 82.8%

public_square 58.6% 54.5% 57.9%
shopping_mall 589% 55.6% 62.3%
street_pedestrian 42.1% 47.5% 50.2%
street_traffic 84.8% 87.2% 85.9%
tram 798% 77.4% 80.8%
average 69.3% 689% 71.9%

The results show that the system performance differed between
different classes and between devices. We obtained the best results
for device a, as it was overrepresented in the development sample.
We also observe that the systems performance for synthetic devices
s1-s3 was similar to performance for devices s4-s6 even though de-
vices s4-s6 was present only in the test set, while s1-s3 were also
included in the training set.

4. DISCUSSION

Our systems show that even without using complex solutions, big
ensembles, and pretrained embeddings results, that are significantly
better than provided benchmark, are achievable. Nevertheless, the
results show that the system is not perfect. First of all, we achieved

Challenge

Table 2: Log-loss by model and class.

Class m0-m1 m2 m3
airport 1.018 1.255 0.976
bus 0.526 0.550 0.443
metro 0.716 0.725 0.639
metro_station 0.753 0907 0.722
park 0.566 0.738 0.530

public_square 1.165 1.448 1.148
shopping_mall 1.073 1.353 1.056
street_pedestrian 1.441 1.649 1.355
street_traffic 0.561 0.473 0.466
tram 0.636 0.636 0.719
average 0.846 0973 0.790

Table 3: Accuracy by model and device.
Device m0-ml m2 m3
a 758% 72.4% 76.1%
b 69.4% 71.5% 74.8%
c 70.9% 70.3% 73.3%
sl 68.8% 69.7% 11.5%
s2 66.7% 65.5% 68.5%
s3 68.5% 70.0% 71.8%
s4 69.4% 68.5% 70.9%
5 66.7% 67.0% 69.4%
s6 679% 65.5% 70.6%

significantly better performance for the overrepresented devices.
Secondly, we observed strong differences in performance across
classes and across devices.

During our experiments we observed that the model should
probably be trained longer than the chosen number of epochs. How-
ever, due to time and resource constraints, we were not able to ex-
tend our solution.

5. REFERENCES

[1] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling
for convolutional neural networks,” ICLM, 2019.

[2] http://dcase.community/challenge2020/.

[3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” arXiv e-prints, p.
arXiv:1912.01703, Dec. 2019.

[4] https://librosa.github.io/librosa/index.html.

[5] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A Simple Data Aug-
mentation Method for Automatic Speech Recognition,” arXiv
e-prints, p. arXiv:1904.08779, Apr. 2019.

[6] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond Empirical Risk Minimization,” arXiv e-
prints, p. arXiv:1710.09412, Oct. 2017.

[7] https://github.com/IRomul/argus-freesound.
[8] https://pypi.org/project/efficientnet-pytorch.

Detection and Classification of Acoustic Scenes and Events 2020 Challenge

[9] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv e-prints, p. arXiv:1412.6980, Dec. 2014.

[10] L. N. Smith, “A disciplined approach to neural network hyper-
parameters: Part 1 — learning rate, batch size, momentum,
and weight decay,” arXiv e-prints, p. arXiv:1803.09820, Mar.
2018.

