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ABSTRACT

In this technical report, we present our method for task 4 of DCASE
2020 challenge (Sound event detection and separation in domestic
environments). The goal of the task is to evaluate systems for the de-
tection of sound events using real data either weakly labeled or unla-
beled and simulated data that is strongly labeled (with timestamps).
We find that models perform well on synthetic data, but may not
perform well on real data. We thus improve the baseline [1] by us-
ing a variety of data augmentation methods and synthesizing more
complex synthetic data for training. Moreover, we present multi-
scale residual convolutional recurrent neural network (CRNN) to
solve the problem of multi-scale detection. The promising results
on the validation set prove the effectiveness of our method.

Index Terms— Sound event detection, Mean teacher, Residual
block, Median window, Audio synthesis, Data augmentation

1. INTRODUCTION

One of the DCASE 2020 challenges is how to better use synthetic
audio for training. In [2], it is said that the model may overfit on
the synthetic data, resulting in poor performance on real audio, be-
cause of the unbalance between synthetic audio and real audio in
the labeled data. To solve this problem, we synthesize more com-
plex synthetic audio and use a variety of data augmentation methods
to expand the scale of the weakly labeled data set. In addition, we
also use the method of spectrum augmentation to reduce overfitting.
Like the baseline method in [1], we use mean teacher [3] for semi-
supervised learning. In order to solve the problem of multi-scale
detection, we modify the ResNet [4] module to extract convolution
kernels of different sizes for features of different scales. To reduce
false positives, we replace attention pooling function with linear
softmax function. The evaluation results on the validation set prove
the superiority of our method over the baseline method.

2. METHOD

In this section we will introduce our method, particularly its novel
components with respect to the baseline method in [1], including
linear softmax, multi-scale residual block, data augmentation and
synthesis.

2.1. Overview

Our model follows the CRNN structure. In the CNN part, we apply
several multi-scale residual blocks we presented to extract multi-
scale local features. In the RNN part, we apply two Bi-GRU to
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Figure 1: Illustration of Multi-scale residual block.

extract temporal features. Afterwards, a Dense layer is applied to
obtain the event frame-level probability. Finally, linear softmax is
utilized to obtain event recording-level probability. At the same
time, we use a variety of data augmentation methods and audio syn-
thesis to help model training.

2.2. Multi-scale residual block

The traditional convolutional neural network(CNN) module is
prone to the vanishing gradient problem if the network is too deep,
which makes it difficult for the model to converge. ResNet [5] used
shortcut connections to make the gradient better propagate from the
back layer to the front layer during back propagation. It can accel-
erate the process of training. At the same time, the length of events
and the number of occurrences in this task are not fixed. This will
cause the model to work with inconsistent accuracy for events of
different scales. To solve this problem, we add a branch in basic
residual block. This branch contains convolution kernels of differ-
ent sizes, so that the model can extract richer and multi-scale fea-
tures. See Figure 1.

2.3. Linear softmax

Wang et al. [5] compared five different types of pooling functions in
the multiple instance learning (MIL) framework for sound event de-
tection (SED), namely Max pooling, Average pooling, Linear soft-
max, Exponential softmax and Attention pooling, found that At-
tention pooling would cause too many false positives, while Linear
softmax performs the best. Linear softmax is defined as follows:
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where y; is the predicted probability of the i*" frame of an event,
and y is the aggregated recording-level probability of the same
event.

2.4. Data augmentation

We use three traditional data augmentation method to augment
weakly labeled data: TimeStretch, PitchShift, TimeShift which all
directly operate on the original audio data. TimeStretch is to stretch
or shorten the duration of the audio in the time series while keeping
the original audio shape basically unchanged (that is, when the pitch
does not change). The principle is to use a phase vocoder, after a
short-time Fourier transform, to speed up or slow down the rate by
a factor, and then transform it back to the time domain. PitchShift
is to increase or decrease the pitch of the original audio in semi-
tone units while keeping the original audio time series unchanged.
TimeShift refers to the shift in the time series, which is divided into
two types, placing the former part of the time series at the end and
placing the latter part of the time series at the front.

SpecAugment [6] includes three data augmentation methods,
warping the features, masking blocks of frequency channels, and
masking blocks of time steps. In our method, we use frequency
masks for data augmentation. All augmentations of SpecAugment
are directly operated on the audio spectrogram, which can save a lot
of calculation time. The frequency mask adds some masks to the
frequency channels of the spectrogram to augment the data. Fre-
quency masking is applied so that f consecutive mel frequency
channels [fo, fo + f) are masked, where f is first chosen from a
uniform distribution from 0 to the frequency mask parameter F,
and fo is chosen from [0, v — f). v is the number of mel frequency
channels. Usually the mask is to make this part of the frequency
channels mean value or directly set to zero, and the mean value of
the entire log mel spectrum is taken in our experiment. Unlike the
traditional audio data augmentation methods, which directly oper-
ate on the original audio, this frequency mask data augmentation
method only operates on a specific part, ensuring that the complete
information of the remaining parts is retained without distortion.
The audio augmentation in this way retains the information of the
original audio as much as possible, but it is different from the orig-
inal audio and realizes the augment operation.

2.5. Audio synthesis

It is well known that a model that performs well on synthesized au-
dio may not perform well on real audio. This is because the model
overfits on synthesized audio of low complexity. Therefore, we syn-
thesize more complex synthesized audio to reduce overfitting. The
synthesis uses the Scaper [7], a public toolkit for audio synthesis
and augmentation. See specific parameters in Section 3.1.

3. EVALUATION RESULTS

3.1. Dataset

Among the real audio of the development dataset in this challenge,
the training set contains 1, 578 weakly labeled audio, 14, 412 unla-
beled audio, and the validation set contains 1, 168 audio. Each au-
dio lasts for 10s, and there are 10 types of sounds, including Speech,
Dog, Cat, Alarm/bell/ringing, Dishes, Frying, Blender, Running
water, Vacuum cleaner, and Electric shaver/toothbrush.
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Table 1: F1-score for the baseline and presented methods.

Event-based Macro F-score (%)

PSDS macro F-score (%)

Baseline 34.80 60.00
Modell 46.62 66.58
Model2 48.43 68.55
Model3 47.80 69.93
Model4 48.97 68.01

There are 2, 060 background files from SINS and 1, 009 fore-
ground from Freesound for synthesizing audio. The reference deci-
bel is set to -35 dB, the polyphony maximum is limited to 3, the
FBSNR range is set to 2-30 dB, and a total of 3,237 audio seg-
ments are synthesized.

3.2. Experimental setup

The audio is resampled to 22,050 Hz and Log-Mel spectrogram
is extracted from audio clips by 128-bin, 2, 048-window, and 255-
hop. The spectrogram is used as the input of the system with a size
of 864x128. The CNN part contains 7 multi-scale residual blocks,
for which the number of filters and pooling size are respectively [16,
32, 64, 128, 128, 128, 128] and [[2, 2], [2, 2], [ 2, 2], [1, 2], [1, 2],
[1, 2], [1, 2]]. The RNN part is the same as the baseline.

Like baseline, median filters for different events are also used
in post-processing with different window sizes: Alarm/bell/ringing,
Dishes, Dog and Speech is set to 2 (0.2s), Blender and Cat is set to
6 (0.6s), Electric shaver/toothbrush, Frying and Vacuum cleaner is
set to 42 (3.9s) and Running water is set to 16 (1.5s).

The compression range of TimeStretch is set to [0.8, 1.5]. The
pitch change range of PitchShift is set to [-2, 2] semitones and time
shift range is set to [-0.2, 0.2]. The frequency mask uses four ran-
dom masks of size in [0, 10].

3.3. Result

We submit a total of 4 models. Model 1 uses Linear softmax, basic
residual block and Frequency mask. Model 2 adds the augmen-
tation of weakly labeled data on the basis of Model 1. Model 3
replaces the basic residual block in the first model with the Multi-
scale residual block mentioned in this report, and Model 4 adds the
augmentation of weakly labeled data to Model 3. The results of
these models on the validation set are shown in the Table 1. It can
be seen from the results that our proposed methods are much higher
than the baseline. What’s more, Augmenting the weakly labeled
data or replacing the basic residual block with multi-scale residual
block can both improve on Event-based Macro F-score. Model 3
performs best on PSDS macro F-score.

4. CONCLUSION

In this report, we presented an improved residual CRNN for multi-
scale sound event detection. We used a variety of data augmentation
methods to solve unbalanced dataset problem and synthesized more
complex data. Finally, Evaluation results show that our method can
obtain obviously higher accuracy than the baseline.
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