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ABSTRACT

This report summarizes our submission for Task-2 of the DCASE
2020 Challenge. We propose two different anomalous sound de-
tection systems, one based on features extracted from a modula-
tion spectral signal representation and the other based on i-vectors
extracted from mel-band features. The first system uses a nearest
neighbour graph to construct clusters which capture local varia-
tions in the training data. Anomalies are then identified based on
their distance from the cluster centroids. The second system uses
i-vectors extracted from mel-band spectra for training a Gaussian
Mixture Model. Anomalies are then identified using their negative
log likelihood. Both these methods show significant improvement
over the DCASE Challenge baseline AUC scores, with an average
improvement of 6% across all machines. An ensemble of the two
systems is shown to further improve the average performance by
11% over the baseline.

Index Terms— i-Vectors, Amplitude-Modulation Spectrums,
Graph, Clustering, Gaussian Mixture Models

1. INTRODUCTION

Monitoring industrial machinery can prevent the production of
faulty products and decrease the chances of machine breakdown.
Anomalous sounds can indicate symptoms of unwanted activity,
hence, Anomalous Sound Detection (ASD) systems can potentially
be used for real time monitoring of machines. Unsupervised ASD
systems rely on only “normal” sounds for identifying anomalies.
Developing ASD systems in an unsupervised manner is essential,
as: (i) the nature of anomalies may not be known beforehand, and
(ii) deliberately destroying expensive devices is impractical from a
development cost perspective. In addition, the frequency at which
anomalies occur is low and the variability in the type of anomaly is
high, therefore, developing balanced datasets for supervised learn-
ing is difficult.

In our proposed systems, we focus on using features which are
able to capture anomalous behaviour. Simple machine learning al-
gorithms when used on top of these features are able to beat the
baseline performance[1]. In our first system, we propose an outlier
detection method which is similar to a nearest neighbour search. In
this method, clusters of normal sounds are formed using a nearest
neighbour graph to capture variations in the normal working sounds
of a machine. Anomalies are then identified based on their distance
from these clusters. Modulation spectrum features are used for this

system. The features are extracted from the so-called modulation
spectrum (MS) signal representation, which quantifies the rate of
change of the signal spectral components over time. These features
have previously been useful for stress detection in speech [2], for
speech enhancement [3], and room acoustic characterization [4], to
name a few applications.

In our second system, in turn, we use i-vectors and Gaussian
Mixture Models (GMM) for anomaly detection. i-vectors have been
widely used for speech applications, including speech, speaker, lan-
guage, and accent recognition. We extract i-vectors from MFCC
features and use them to train GMMs for anomaly detection. The
negative log likelihood for a sample is used as its anomaly scores.
Lastly, an ensemble of these two systems is also experimented with.

2. SYSTEM DESCRIPTION

2.1. System 1 - Graph Clustering using Modulation Spectro-
grams

2.1.1. Pre-processing and Feature Extraction

Modulation spectrum corresponds to an auditory spectro- temporal
representation that captures long-term dynamics of an audio signal.
The pipeline proposed in [5] is used to extract modulation spectro-
grams.

Prior to feature extraction, noise reduction is performed on the
signal through a spectral gating method (using noisereduce1 in
Python), described as follows: 100 normal training sound clips for
a machine-id are averaged and used as a noise clip for that machine-
id. An FFT is calculated over this noise clip and statistics including
the mean power, are tabulated for each frequency band. A threshold
for each frequency band is calculated based upon the statistics. An
FFT is calculated over the signal. A mask is determined by com-
paring the signal FFT to the threshold. The mask is smoothed with
a filter over frequency and time. The mask is appled to the FFT of
the signal, and is inverted.

The speech activity level is normalized to -26 dBov (dB over-
load), after noise removal thus eliminating unwanted energy varia-
tions caused by different loudness levels in the speech signal. Next,
the pre-processed speech signal x̂(n) is filtered by a 60-channel
gammatone filterbank, simulating cochlear processing [6]. The first
filter of the filterbank is centered at 125 Hz and the last one at at just
below half of the sampling rate. Each filter bandwidth follows the

1https://pypi.org/project/noisereduce/
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Figure 1: Block diagram describing steps for computing the modulation spectral representation

Figure 2: Frequency responses of the 8-channel modulation filter-
bank

equivalent rectangular bandwidth (ERB), which is an approxima-
tion of the bandwidths of the filters in human hearing, as described
below:

ERBj =
f i

Qear
+Bmin, (1)

where f j represents the center frequency of the j-th filter. Qear rep-
resents the asymptotic filter quality at high frequencies and Bmin is
the minimum bandwidth for low frequencies. They are set, respec-
tively, to 9.265 and 24.7.

The temporal envelope ej(n) is then computed from x̂j(n), the
output of the j-th acoustic filter, via the Hilbert transform:

ej(n) =
√
x̂j(n)2 + H {x̂j(n)}2 (2)

where H {.} denotes the Hilbert Transform. Temporal envelopes
ej(n), j = 1, ..., 60 are then windowed with a 256-ms Hamming
window and shifts of 40 ms. The discrete Fourier transform F{.}
of the temporal envelope ej(m;n) (m indexes the frame) is then
computed in order to obtain the modulation spectrum E j(m, fm),
i.e.,

E j(m; fm) = ‖F (ej(m;n))‖ (3)

where m represents the m-th frame obtained after every Hamming
window multiplication and fm designates modulation frequency.
The time variable n is dropped for convenience. Lastly, following
recent physiological evidence of a modulation filterbank structure
in the human auditory system [6]. an auditory-inspired modulation
filterbank is further used to group modulation frequencies into eight
bands. These are denoted as E (j,k)(m), k = 1, ..., 8, where j indexes
the gammatone filter and k the modulation filter. Figure 3 depicts
the frequency response for the 8-channel modulation filterbank used
in our system. Note that the filter center frequencies are equally
spaced in the logarithmic scale from 4 to 128 Hz. The modulation
spectral representation frames obtained over time are averaged for

Figure 3: Modulation spectrograms for four normal training sam-
ples from Pump machine-id 2

all our experminets. This results in a 60 × 8 modulation spectral
representation (i.e., modulation spectrogram) for each sound clip.

2.1.2. Anomaly Detection

Figure 3 shows four modulation spectrograms for the normal train-
ing samples of Pump machine-id 2. It can be seen that a significant
amount of variability exists within the same machine-id. We capture
this variability by a graph-based clustering approach using modula-
tion spectra as features.

Consider a graph G = (V,E) where V is the set of nodes
comprising of the normal training sound clips. E is the set of
edges connecting the nodes. Two nodes vp, vq ∈ V share an edge
epq ∈ E such that q = argmin({D(vp, vr) | r = 1, .., p −
1, p + 1, ...|V | }). Here D(vp, vr) is the L1 distance between
vp, vr. The graph G, when constructed in this manner, consists of
several disjoint subgraphs i.e. G = g1 ∪ g2 ∪ g3...gn such that
gl ∩ gm = φ ∀ l,m = 1, 2, ...n | l 6= m. Each of these sub-
graphs is treated as a separate cluster. A centroid µl and standard
deviation σl are calculated corresponding to each cluster by taking
the mean and standard deviation of all frequency bins. µl, σl both
have dimensions 60× 8. This graph G and the corresponding clus-
ter centroids, standard deviations are computed separately for each
machine-id.

Anomaly score for a sound clip of a machine-id is calculated
using the standard-deviation normalized distance from each cluster
centroid corresponding to that machine-id. For a given sample in
the test dataset vt /∈ V , its anomaly score At is given by At =
min({zt,l | ∀ l})

zt,l =

60∑
j=1

8∑
k=1

|zt,j,k − µl,j,k|
σt,j,k

. (4)

Here, zt,j,k is the energy value at the jth gammatone filterbank
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Figure 4: Diagram describing the steps for i-vector extraction

and kth modulation filterbank. The intuition behind this strategy for
finding anomaly scores is that normal samples will lie closer the one
of the cluster centroids in comparison to anomalous samples. This
method does not require any training and can be seen as a KNN
based ASD system where instead of computing distances from each
training sample, we only find the distances from the cluster centroid.

2.2. System 2 - GMMs using MFCC i-Vectors

2.2.1. Feature Extraction

The i-vector framework maps a list of feature vectors, O =
{ot}Nt=1, where ot ∈ RF , and N is the frame index. Typically
Mel-frequency cepstral coefficients (MFCC’s) extracted from an ut-
terance, into a fixed-length vector, n ∈ RD . In order to achieve
that, a Gaussian mixture model (GMM), λ = ({wk}, {mk}, {σk}),
is used. The GMM, trained on multiple utterances, is referred to
as the universal background model (UBM), and is used to collect
Baum-Welch statistics from each utterance [7]. Such statistics are
computed for each mixture component k, resulting in the so-called
supervector M ∈ RFK , where F represents the feature dimension
and K is the number of Gaussian components. As in the Joint Fac-
tor Analysis (JFA) [8], the i-vector framework also considers that
speaker and channel variability lies in a lower subspace of the GMM
supervectors [9]. The main difference between the two approaches
is that the i-vector projects both speaker and channel variability into
the same subspace, namely total variability space, represented as
follows:

M = m+ Tw, (5)

where M is the dependent supervector (extracted from a specific
utterance) and m is the independent supervector (extracted from
the UBM), T corresponds to a rectangular low-rank total variability
matrix and w is a random vector with a normal distribution, the so-
called i-vector. In our experiments, a 100-dimensional i-vector was
adopted extracted on top of MFCC features.

Mel frequency spectrum coefficients - Prior to their extraction, the
input signals (sampled at 16 kHz) are normalized to -26 dBOV. The
signals also undergo a pre-emphasis filter of coefficient 0.95, which
is meant to balance low and high frequency magnitudes. A 30-ms
Hamming window with 50% overlap is applied before extracting
the MFCCs. The Hamming window is used to remove edge effects
[10]. The cepstral feature vector can then be extracted from each
frame according to:

cn =
M∑
m=1

[Ym]cos
[
πn
M

(
m− 1

2

)]
, n = 1, 2, 3, ..., N, (6)

Figure 5: 2D t-SNE projections of i-Vectors corresponding to
machine-slider, machine-id 0

where cn is the nth mel-cepstral coefficient and Ym refers to the
log-energy of the mth filter. In this work, a set of 13 coefficients
together with log energy, delta and delta-delta coefficients form the
feature vector from each frame.

2.2.2. Anomaly Detection

The 100 dimensional i-vectors extracted from the normal training
sounds are used to train a Gaussian Mixture Model using scikit-
learn [11]. Ten mixture components are used for all machines with
each component having its own general full covariance matrix. The
ability of i-vectors to capture anomalous behaviour is depicted in
Figure 5. Here, 2D t-SNE embeddings show that i-vectors corre-
sponding to anomalous sounds are well separated from the normal
sounds. i-vectors seem to be spread according to a Gaussian den-
sity, which is the key motivation behind using GMMs for anomaly
detection.

The negative log-likelihood of sample x is given by:

−logP (x|π, µ, σ) = −log
{ K∑
k=1

πkN(x|µk, σk)
}
, (7)

where πk is the mixing coefficient for the kth component of the
GMM and µk, σk are the corresponding mean and co-variance ma-
trices. These values are used as the anomaly score.

2.3. System 3 - Graph–i-vector Ensemble

Lastly, an ensemble of the two proposed system shows performance
improvement in several cases. Anomaly scores obtained from the
two systems are first normalized using their minimum and maxi-
mum values. The ensemble anomaly scores are then computed by
taking the geometric mean of the normalized values.

3. RESULTS

The results are shown in Table 1. When trained on develop-
ment data[12, 13], the graph clustering system outperforms the
baseline[1] by an average of 6% and 32% AUC for machines slider
and valve respectively. The i-vector GMM system outperforms
baseline and graph clustering system for some of the machine IDs
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Table 1: AUC and pAUC scores for all machines in the development dataset. Modspec Graph, iVGmm, Ensemble correspond to Systems
1-3, respectively. The best scores for each case have been shown in bold.

Machine Mid Baseline
AUC

Modspec
Graph AUC

iVGmm
AUC

Ensemble
AUC

Baseline
pAUC

Modspec
Graph pAUC

iVGmm
pAUC

Ensemble
pAUC

ToyCar

1 81.36% 78.24% 75.04% 81.64% 68.40% 64.69% 57.54% 66.75%
2 85.97% 89.06% 83.30% 91.72% 77.72% 76.14% 67.00% 79.78%
3 63.30% 67.16% 79.47% 78.21% 55.21% 52.58% 59.52% 56.37%
4 84.45% 89.40% 94.84% 96.44% 68.97% 63.54% 82.94% 84.80%
Avg 78.77% 80.96% 83.16% 87.00% 67.58% 64.24% 66.75% 71.92%

ToyConveyor

1 78.07% 62.56% 55.51% 64.62% 64.25% 51.59% 52.82% 52.24%
2 64.16% 54.03% 53.80% 56.65% 56.01% 49.99% 50.95% 50.23%
3 75.35% 59.10% 59.09% 64.06% 61.03% 50.31% 52.82% 52.25%
Avg 72.53% 58.57% 56.13% 61.78% 60.43% 50.63% 52.20% 51.58%

fan

0 54.41% 63.37% 67.85% 67.12% 49.37% 49.73% 57.38% 52.92%
2 73.40% 79.32% 70.39% 80.48% 54.81% 57.16% 61.93% 59.21%
4 61.61% 71.76% 73.52% 78.07% 53.26% 50.68% 57.53% 53.99%
6 73.92% 74.00% 81.15% 81.90% 52.35% 49.38% 56.31% 49.23%
Avg 65.83% 72.11% 73.23% 76.89% 52.45% 51.74% 58.29% 53.84%

pump

0 67.15% 86.66% 74.99% 86.95% 56.74% 82.52% 67.10% 78.32%
2 61.53% 62.44% 74.91% 70.06% 58.10% 64.77% 60.08% 65.72%
4 88.33% 84.16% 92.02% 90.73% 67.10% 59.95% 73.74% 68.00%
6 74.55% 81.64% 71.10% 82.65% 58.02% 66.20% 51.70% 66.56%
Avg 72.89% 78.72% 78.26% 82.60% 59.99% 68.36% 63.15% 69.65%

slider

0 96.19% 99.91% 83.92% 98.72% 81.44% 99.53% 50.04% 93.44%
2 78.97% 84.36% 56.93% 77.93% 63.68% 73.86% 47.84% 52.89%
4 94.30% 97.83% 87.84% 95.93% 71.98% 88.59% 62.71% 79.69%
6 69.59% 79.03% 59.04% 71.40% 49.02% 55.47% 49.91% 52.28%
Avg 84.76% 90.28% 71.93% 86.00% 66.53% 79.36% 52.63% 69.57%

valve

0 68.76% 100.00% 79.33% 98.80% 51.70% 100.00% 52.94% 95.62%
2 68.18% 99.88% 85.35% 98.69% 51.83% 99.34% 56.27% 93.29%
4 74.30% 98.26% 84.10% 95.88% 51.97% 91.32% 56.32% 80.26%
6 53.90% 89.22% 69.84% 85.01% 48.43% 72.59% 49.91% 59.65%
Avg 66.28% 96.84% 79.65% 94.59% 50.98% 90.81% 53.86% 82.21%

in pump and fan. The ensemble of graph clustering system and i-
vector GMM system outperforms the baseline by an average AUC
score of 8%,11% and 10% for machines ToyCar, fan, and pump, re-
spectively. Interestingly, the performance for the ToyConveyor case
was lower than that achieved by the benchmark system for all three
proposed systems. This may be due to anomalies which occur for a
very small time interval and are not being captured by the proposed
longer-term features. We provide our implementation here2.
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